945 research outputs found

    Statistical fluctuations for the fission process on its decent from saddle to scission

    Get PDF
    We reconsider the importance of statistical fluctuations for fission dynamics beyond the saddle in the light of recent evaluations of transport coefficients for average motion. The size of these fluctuations are estimated by means of the Kramers-Ingold solution for the inverted oscillator, which allows for an inclusion of quantum effects.Comment: 12 pages, Latex, 5 Postscript figures; submitted to PRC e-mail: [email protected] www home page: http://www.physik.tu-muenchen.de/tumphy/e/T36/hofmann.htm

    Low Freeze-out Temperature and High Collective Velocities in Relativistic Heavy-Ion Collisions

    Full text link
    On the basis of a nine-parameter expanding source model that includes special relativity, quantum statistics, resonance decays, and freeze-out on a realistic hypersurface in spacetime, we analyze in detail invariant pi+, pi-, K+, and K- one-particle multiplicity distributions and pi+ and K+ two-particle correlations in nearly central collisions of Si + Au at a laboratory bombarding energy per nucleon of 14.6 GeV/c. By considering separately the one-particle data and the correlation data, we find that the central baryon density, nuclear temperature, transverse collective velocity, longitudinal collective velocity, and source velocity are determined primarily by one-particle multiplicity distributions and that the transverse radius, longitudinal proper time, width in proper time, and pion incoherence fraction are determined primarily by two-particle correlations. By considering separately the pion data and the kaon data, we find that although the pion freeze-out occurs somewhat later than the kaon freeze-out, the 99% confidence-level error bars associated with the two freeze-outs overlap. These and other detailed studies confirm our earlier conclusion based on the simultaneous consideration of the pion and kaon one-particle and correlation data that the freeze-out temperature is less than 100 MeV and that both the longitudinal and transverse collective velocities--which are anti-correlated with the temperature--are substantial. We also discuss the flaws in several previous analyses that yielded a much higher freeze-out temperature of approximately 140 MeV for both this reaction and other reactions involving heavier projectiles and/or higher bombarding energies.Comment: 14 pages. RevTeX 3.1. Submitted to Physical Review C. PostScript version available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/lf

    Self-similar solution of a nonsteady problem of nonisothermal vapour condensation on a droplet growing in diffusion regime

    Full text link
    This paper presents a mathematically exact self-similar solution to the joint nonsteady problems of vapour diffusion towards a droplet growing in a vapour-gas medium and of removal of heat released by a droplet into a vapour-gas medium during vapour condensation. An equation for the temperature of the droplet is obtained; and it is only at that temperature that the self-similar solution exists. This equation requires the constancy of the droplet temperature and even defines it unambiguously throughout the whole period of the droplet growth. In the case of strong display of heat effects, when the droplet growth rate decreases significantly, the equation for the temperature of the droplet is solved analytically. It is shown that the obtained temperature fully coincides with the one that settles in the droplet simultaneously with the settlement of its diffusion regime of growth. At the obtained temperature of the droplet the interrelated nonsteady vapour concentration and temperature profiles of the vapour-gas medium around the droplet are expressed in terms of initial (prior to the nucleation of the droplet) parameters of the vapour-gas medium. The same parameters are used to formulate the law in accordance with which the droplet is growing in diffusion regime, and also to define the time that passes after the nucleation of the droplet till the settlement of diffusion regime of droplet growth, when the squared radius of the droplet becomes proportionate to time. For the sake of completeness the case of weak display of heat effects is been studied.Comment: 12 pages, 4 figure

    Thermal fission rate around super-normal phase transition

    Get PDF
    Using Langer's ImFIm F method, we discuss the temperature dependence of nuclear fission width in the presence of dissipative environments. We introduce a low cut-off frequency to the spectral density of the environmental oscillators in order to mimic the pairing gap. It is shown that the decay width rapidly decreases at the critical temperature, where the phase transition from super to normal fluids takes place. Relation to the recently observed threshold for the dissipative fission is discussed.Comment: 12 pages, Latex, Submitted to Physical Review C for publication, 3 Postscript figures are available by request from [email protected]

    Realistic Expanding Source Model for Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations in Relativistic Heavy-Ion Collisions

    Get PDF
    We present a realistic expanding source model with nine parameters that are necessary and sufficient to describe the main physics occuring during hydrodynamical freezeout of the excited hadronic matter produced in relativistic heavy-ion collisions. As a first test of the model, we compare it to data from central Si + Au collisions at p_lab/A = 14.6 GeV/c measured in experiment E-802 at the AGS. An overall chi-square per degree of freedom of 1.055 is achieved for a fit to 1416 data points involving invariant pi^+, pi^-, K^+, and K^- one-particle multiplicity distributions and pi^+ and K^+ two-particle correlations. The 99-percent-confidence region of parameter space is identified, leading to one-dimensional error estimates on the nine fitted parameters and other calculated physical quantities. Three of the most important results are the freezeout temperature, longitudinal proper time, and baryon density along the symmetry axis. For these we find values of 92.9 +/- 4.4 MeV, 8.2 +/- 2.2 fm/c, and 0.0222 + 0.0096 / - 0.0069 fm^-3, respectively.Comment: 37 pages and 12 figures. RevTeX 3.0. Submitted to Physical Review C. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of all figures, are available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/publications/res

    Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions

    Full text link
    Elliptic flow and two-particle azimuthal correlations of charged hadrons and high-pTp_T pions (pT>p_T> 1 GeV/cc) have been measured close to mid-rapidity in 158A GeV/cc Pb+Au collisions by the CERES experiment. Elliptic flow (v2v_2) rises linearly with pTp_T to a value of about 10% at 2 GeV/cc. Beyond pTp_T\approx 1.5 GeV/cc, the slope decreases considerably, possibly indicating a saturation of v2v_2 at high pTp_T. Two-pion azimuthal anisotropies for pT>p_T> 1.2 GeV/cc exceed the elliptic flow values by about 60% in mid-central collisions. These non-flow contributions are attributed to near-side and back-to-back jet-like correlations, the latter exhibiting centrality dependent broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure

    Systematics of Fission Barriers in Superheavy Elements

    Get PDF
    We investigate the systematics of fission barriers in superheavy elements in the range Z = 108-120 and N = 166-182. Results from two self-consistent models for nuclear structure, the relativistic mean-field (RMF) model as well as the non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts lower barriers than most Skyrme interactions. In particular the fission isomers are predicted too low by the RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values around Z = 110, N = 180 and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac

    e+e--pair production in Pb-Au collisions at 158 GeV per nucleon

    Get PDF
    We present the combined results on electron-pair production in 158 GeV/n {Pb-Au} (s\sqrt{s}= 17.2 GeV) collisions taken at the CERN SPS in 1995 and 1996, and give a detailed account of the data analysis. The enhancement over the reference of neutral meson decays amounts to a factor of 2.31±0.19(stat.)±0.55(syst.)±0.69(decays)\pm0.19 (stat.)\pm0.55 (syst.)\pm0.69 (decays) for semi-central collisions (28% σ/σgeo\sigma/\sigma_{geo}) when yields are integrated over m>m> 200 MeV/c2c^2 in invariant mass. The measured yield, its stronger-than-linear scaling with NchN_{ch}, and the dominance of low pair ptp_t strongly suggest an interpretation as {\it thermal radiation} from pion annihilation in the hadronic fireball. The shape of the excess centring at mm\approx 500 MeV/c2c^2, however, cannot be described without strong medium modifications of the ρ\rho meson. The results are put into perspective by comparison to predictions from Brown-Rho scaling governed by chiral symmetry restoration, and from the spectral-function many-body treatment in which the approach to the phase boundary is less explicit.Comment: 39 pages, 40 figures, to appear in Eur.Phys.J.C. (2005

    Low density instability in a nuclear Fermi liquid drop

    Full text link
    The instability of a Fermi-liquid drop with respect to bulk density distortions is considered. It is shown that the presence of the surface strongly reduces the growth rate of the bulk instability of the finite Fermi-liquid drop because of the anomalous dispersion term in the dispersion relation. The instability growth rate is reduced due to the Fermi surface distortions and the relaxation processes. The dependence of the bulk instability on the multipolarity of the particle density fluctuations is demonstrated for two nuclei 40Ca^{40}Ca and 208Pb^{208}Pb.Comment: 12 pages, latex, 3 ps-figures, submitted to Phys. Rev.
    corecore