12 research outputs found

    Zebrafish as a model for kidney function and disease

    Get PDF
    Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease

    dOCRL maintains immune cell quiescence in Drosophila by regulating endosomal traffic

    Get PDF
    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand SpĂĄtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome

    Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL.

    Get PDF
    Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PtdIns(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PtdIns(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients

    The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2

    No full text
    Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions

    Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease

    No full text
    corecore