459 research outputs found

    Physicians' working conditions and job satisfaction : does hospital ownership in Germany make a difference?

    Get PDF
    Background: A growing number of German hospitals have been privatized with the intention of increasing cost effectiveness and improving the quality of health care. Numerous studies investigated what possible qualitative and economic consequences these changes issues might have on patient care. However, little is known about how this privatization trend relates to physicians' working conditions and job satisfaction. It was anticipated that different working conditions would be associated with different types of hospital ownership. To that end, this study's purpose is to compare how physicians, working for both public and privatized hospitals, rate their respective psychosocial working conditions and job satisfaction. Methods: The study was designed as a cross-sectional comparison using questionnaire data from 203 physicians working at German hospitals of different ownership types (private for-profit, public and private nonprofit). Results: The present study shows that several aspects of physicians' perceived working conditions differ significantly depending on hospital ownership. However, results also indicated that physicians' job satisfaction does not vary between different types of hospital ownership. Finally, it was demonstrated that job demands and resources are associated with job satisfaction, while type of ownership is not. Conclusion: This study represents one of a few studies that investigate the effect of hospital ownership on physicians work situation and demonstrated that the type of ownership is a potential factor accounting for differences in working conditions. The findings provide an informative basis to find solutions improving physicians' work at German hospitals

    Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy

    Get PDF
    Development and homeostasis of multicellular organisms is largely controlled by complex cell-cell signaling networks that rely on specific binding of secreted ligands to cell surface receptors. The Wnt signaling network, as an example, involves multiple ligands and receptors to elicit specific cellular responses. To understand the mechanisms of such a network, ligand-receptor interactions should be characterized quantitatively, ideally in live cells or tissues. Such measurements are possible using fluorescence microscopy yet challenging due to sample movement, low signal-to-background ratio and photobleaching. Here, we present a robust approach based on fluorescence correlation spectroscopy with ultra-high speed axial line scanning, yielding precise equilibrium dissociation coefficients of interactions in the Wnt signaling pathway. Using CRISPR/Cas9 editing to endogenously tag receptors with fluorescent proteins, we demonstrate that the method delivers precise results even with low, near-native amounts of receptors

    Complex RNA folding kinetics revealed by single molecule FRET and hidden Markov models

    Get PDF
    We have developed a hidden Markov model and optimization procedure for photon-based single- molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels-Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently found in two FRET constructs and three Mg2+ concentrations. Structures generally tend to become more compact upon addition of Mg2+. Some compact structures are found to significantly depend on Mg2+ concentration, suggesting a tertiary fold stabilized by Mg2+ ions. One compact structure was found to be Mg2+-independent, consistent with stabilization by tertiary Watson-Crick base pairing found in the folded Diels-Alderase structure. A hierarchy of timescales was found, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds timescale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both, compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding and, subsequently, again tertiary refolding

    Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells

    Get PDF
    Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants

    Lef1 regulates caveolin expression and caveolin dependent endocytosis, a process necessary for Wnt5a/Ror2 signaling during Xenopus gastrulation

    Get PDF
    The activation of distinct branches of the Wnt signaling network is essential for regulating early vertebrate development. Activation of the canonical Wnt/β-catenin pathway stimulates expression of β-catenin-Lef/Tcf regulated Wnt target genes and a regulatory network giving rise to the formation of the Spemann organizer. Non-canonical pathways, by contrast, mainly regulate cell polarization and migration, in particular convergent extension movements of the trunk mesoderm during gastrulation. By transcriptome analyses, we found caveolin1, caveolin3 and cavin1 to be regulated by Lef1 in the involuting mesoderm of Xenopus embryos at gastrula stages. We show that caveolins and caveolin dependent endocytosis are necessary for proper gastrulation, most likely by interfering with Wnt5a/Ror2 signaling. Wnt5a regulates the subcellular localization of receptor complexes, including Ror2 homodimers, Ror2/Fzd7 and Ror2/dsh heterodimers in an endocytosis dependent manner. Live-cell imaging revealed endocytosis of Ror2/caveolin1 complexes. In Xenopus explants, in the presence of Wnt5a, these receptor clusters remain stable exclusively at the basolateral side, suggesting that endocytosis of non-canonical Wnt/receptor complexes preferentially takes place at the apical membrane. In support of this blocking endocytosis with inhibitors prevents the effects of Wnt5a. Thus, target genes of Lef1 interfere with Wnt5a/Ror2 signaling to coordinate gastrulation movements

    Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells

    Get PDF
    Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s−1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s−1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension

    Development and evaluation of a computer-based medical work assessment programme

    Get PDF
    Background: There are several ways to conduct a job task analysis in medical work environments including pencil-paper observations, interviews and questionnaires. However these methods implicate bias problems such as high inter-individual deviations and risks of misjudgement. Computer-based observation helps to reduce these problems. The aim of this paper is to give an overview of the development process of a computer-based job task analysis instrument for real-time observations to quantify the job tasks performed by physicians working in different medical settings. In addition reliability and validity data of this instrument will be demonstrated. Methods: This instrument was developed in consequential steps. First, lists comprising tasks performed by physicians in different care settings were classified. Afterwards content validity of task lists was proved. After establishing the final task categories, computer software was programmed and implemented in a mobile personal computer. At least inter-observer reliability was evaluated. Two trained observers recorded simultaneously tasks of the same physician. Results: Content validity of the task lists was confirmed by observations and experienced specialists of each medical area. Development process of the job task analysis instrument was completed successfully. Simultaneous records showed adequate interrater reliability. Conclusion: Initial results of this analysis supported the validity and reliability of this developed method for assessing physicians' working routines as well as organizational context factors. Based on results using this method, possible improvements for health professionals' work organisation can be identified

    Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors

    Full text link
    The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {\kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax
    corecore