1,742 research outputs found

    Pearson cross-correlation in the first four black hole binary mergers

    No full text
    We adopt the Pearson cross-correlation measure to analyze the LIGO Hanford and LIGO Livingston detector data streams around the events GW150914, GW151012,GW151226 and GW170104. We find that the Pearson cross-correlation method is sensitive to these signals, with correlations peaking when the black hole binaries reconstructed by the LIGO Scientific and Virgo Collaborations, are merging. We compare the obtained cross-correlations with the statistical correlation fluctuations arising in simulated Gaussian noise data and in LIGO data at times when no event is claimed. Our results for the significance of the observed cross-correlations are broadly consistent with those announced by the LIGO Scientific and Virgo Collaborations based on matched-filter analysis. In the same data, if we subtract the maximum likelihood waveforms corresponding to the announced signals, no residual cross-correlations persists at a statistically significant level

    The environment of the SN-less GRB 111005A at z = 0.0133

    Full text link
    The collapsar model has proved highly successful in explaining the properties of long gamma-ray bursts (GRBs), with the most direct confirmation being the detection of a supernova (SN) coincident with the majority of nearby long GRBs. Within this model, a long GRB is produced by the core-collapse of a metal-poor, rapidly rotating, massive star. The detection of some long GRBs in metal-rich environments, and more fundamentally the three examples of long GRBs (GRB 060505, GRB 060614 and GRB 111005A) with no coincident SN detection down to very deep limits is in strong contention with theoretical expectations. In this paper we present MUSE observations of the host galaxy of GRB 111005A, which is the most recent and compelling example yet of a SN-less, long GRB. At z=0.01326, GRB 111005A is the third closest GRB ever detected, and second closest long duration GRB, enabling the nearby environment to be studied at a resolution of 270 pc. From the analysis of the MUSE data cube, we find GRB 111005A to have occurred within a metal-rich environment with little signs of ongoing star formation. Spectral analysis at the position of the GRB indicates the presence of an old stellar population (tau > 10 Myr), which limits the mass of the GRB progenitor to M_ZAMS<15 Msolar, in direct conflict with the collapsar model. Our deep limits on the presence of any SN emission combined with the environmental conditions at the position of GRB 111005A necessitate the exploration of a novel long GRB formation mechanism that is unrelated to massive stars.Comment: Now accepted by A&A. Manuscript replaced to match accepted version. Some additional discussion added, and velocity map of the host galaxy now include
    corecore