87 research outputs found

    Design Status of the CLIC 3-TeV Beam Delivery System and Damping Rings

    Get PDF
    We describe the present design status of beam delivery and damping rings for CLIC at 3 TeV cm energy, and outline our future plans. The beam delivery system comprises collimation, final focus and post-IP exit line. Critical design aspects include halo collimation, machine protection, beam removal, and thermal stability analysis. In order to attain the design spot size at the collision point, the damping rings must provide beams of extremely small emittances. In this paper, we focus on collimation and spent beam

    Results of the EUROTeV Post Collision Line Design (PCDL) Task

    Get PDF
    This paper is the deliverable of the EUROTeV Post Collision Line Design (PCDL) task and gives an overview of the published results

    Design of an interaction region with head-on collisions for the ILC

    Get PDF
    An interaction region (IR) with head-on collisions is considered as an alternative to the baseline configuration of the International Linear Collider (ILC) which includes two IRs with finite crossing-angles (2 and 20 mrad). Although more challenging for the beam extraction, the head-on scheme is favoured by the experiments because it allows a more convenient detector configuration, particularly in the forward region. The optics of the head-on extraction is revisited by separating the e+ and e- beams horizontally, first by electrostatic separators operated at their LEP nominal field and then using a defocusing quadrupole of the final focus beam line. In this way the septum magnet is protected from the beamstrahlung power. Newly optimized final focus and extraction optics are presented, including a first look at post-collision diagnostics. The influence of parasitic collisions is shown to lead to a region of stable collision parameters. Disrupted beam and beamstrahlung photon losses are calculated along the extraction elements

    The CARE accelerator R&D programme in Europe

    No full text
    Published online on JACoWCARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far

    CLIC: a Two-Beam Multi-TeV e±e\pm Linear Collider

    Get PDF
    The CLIC study of a high-energy (0.5 - 5 TeV), high-luminosity (1034 - 1035 cm-2 sec-1) e+e- linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Using parameters derived from general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two-Beam Acceleration" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and CLIC Test Facility (CTF) results are described

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]
    corecore