47 research outputs found

    Influence of the laser ablation surface pre-treatment over the ageing resistance of metallic adhesively bonded joints

    Get PDF
    In order to prevent the generation of a potential weakness at the substrate/adhesive interface of adhesively bonded joints, many methods were developed during the decades to pre-treat the substrates surfaces before the deposition of the adhesive. Experimental tests were carried out to simulate the real environmental conditions in which the joints have to work characterizing the mechanical properties of the joints caused by the exposition to high temperature, moisture, presence of chemical agents. The industrial need towards long-scale problem lead to the development of specific accelerated ageing methods able to induce in few weeks the same damage mechanisms within the joints which arise in years during their working life. In this work, different surface laser pre-treatments were studied with a focus on the influence that pre-treatments produce over the variation of the tensile failure load of Single Lap Joints (SLJ), previously subjected to different accelerated ageing cycles. Simple degreasing and grit blasting were also considered as reference treatments. The materials chosen for the manufacturing of the substrates were an aluminium alloy (AA 6082-T6) and a stainless steel (AISI 304). Three different accelerated ageing techniques were tested and compared to each other: (i) a cycle involving the simultaneous presence of high temperature gradient and moisture (method A), (ii) the immersion into an alkaline foam-forming cleanser (method B), and (iii) the immersion into an acid foam-forming cleanser (method C). The results showed that, while the method A did not significantly modify the mechanical strength of the joints, the method B and C resulted detrimental for the mechanical performance of the joints, even if their sensitivity to the tested pre-treatments was different. In particular, for both aluminum and stainless steel joints, it was noticed that the laser pre-treatment was able to reduce the loss of strength produced by the ageing process in comparison with the two reference pre-treatments. However, this result was also dependent of the specific value of energy density used for the laser ablation during the joints pre-treatment

    Feasibility study of adhesive bonding reinforcement by electrospun nanofibers

    Get PDF
    Abstract In previous works, the authors showed that the interleaving of an electrospun nylon nanofibrous mat at the interface between adjacent plies of a composite laminate increases the delamination strength. In particular, the nanomat acts a net-like reinforcing web, enabling a ply-to-ply bridging effect. This reinforcing property of the nanomats can be potentially used in other applications which need to improve the fracture resistance of interfaces, such as adhesive bonding. The present work analyses the feasibility of an electrospun polymeric nanomat as adhesive carrier and reinforcing web in industrial bonding. Thus the adhesive is used to pre-impregnate a nylon nanofibrous mat that is then placed at the interface between two metal pieces and then cured. The aim of the work is first to assess the effectiveness of this procedure, by comparison of the mode-I fracture toughness measured with DCB (Double Cantilever Beam) tests with and without the reinforcement in the adhesive layer. For this purpose, a 2024-T3 aluminum alloy will be bonded using a general purpose, one-part epoxy resin with low viscosity

    Experimental study of the influence of the surface preparation on the fatigue behavior of polyamide single lap joints

    No full text
    The low quality of adhesion performance on polymeric surfaces has forced the development of specific pretreatments able to toughen the interface between substrate and adhesive. Among these methods, atmospheric pressure plasma treatment (APPT) appears particularly suitable for its environmental compatibility and its effectiveness in altering the chemical state of the surface. In this work, an experimental study on adhesively bonded joints realized using polyamide as substrates and polyurethane as the structural adhesive was carried out with the intent to characterize their fatigue behavior, which represents a key issue of such joints during their working life. The single lap joint (SLJ) geometry was chosen and several surface pretreatments were compared with each other: degreasing, abrasion (alone and followed by APPT) and finally APPT. The results show that the abrasion combined with APPT presents the most promising behavior, which appears consistent with the higher percentage of life spent for crack propagation found by means of DIC on this class of joints with respect to the others. APPT alone confers a good fatigue resistance with respect to the simple abrasion, especially at a low number of cycles to failure

    Influence of atmospheric pressure plasma process parameters on the mechanical behavior of thermoplastic joints

    No full text
    The capability of the Atmospheric Pressure Plasma Treatment (APPT) to increase the shear strength of adhesively bonded Single Lap Joints (SLJ) realized with polymeric adherends was investigated, by exploring the different response obtainable by changing the surface-to-nozzle distance and the treatment speed and by considering an industrial application as target. Beyond APPT, abrasion and chemical treatments were also performed and considered as reference. Three thermoplastic resins were used as adherends: polypropylene (PP), polyethylene (PE) and polyamide 66 (PA66). In addition to the mechanical characterization, even the variation of the surface free energy associated with the different combinations of parameters employed for the APPT was evaluated by means of optical contact angle (OCA) measurements. Moreover, for some representative combinations of substrates and APPT parameters, the changes of the polymer chemical structure were assessed by means of infra-red spectroscopy (IR). Finally, the sensitivity of the mechanical behavior to the time between the treatment and the deposition of the adhesive was assessed. The results showed that, in a plasma treated joint, a decrease of the surface-to-nozzle distance assured however an increase of the shear strength with respect to the chemical treated samples, provided that the treatment speed was correspondingly risen up. The trend of the wettability with the process configuration appeared to be consistent with the one exhibited by the joint shear strength, while any apparent influence of the delay time was detectable within 24 h, which allowed to assume that APPT represents a reliable pre-treatment technique for industrial applications
    corecore