1,602 research outputs found

    High-Energy Emission from Interacting Supernovae: New Constraints on Cosmic-Ray Acceleration in Dense Circumstellar Environments

    Full text link
    Supernovae (SNe) with strong interactions with circumstellar material (CSM) are promising candidate sources of high-energy neutrinos and gamma rays, and have been suggested as an important contributor to Galactic cosmic rays beyond 1 PeV. Taking into account the shock dissipation by a fast velocity component of SN ejecta, we present comprehensive calculations of the non-thermal emission from SNe powered by shock interactions with a dense wind or CSM. Remarkably, we consider electromagnetic cascades in the radiation zone and subsequent attenuation in the pre-shock CSM. A new time-dependent phenomenological prescription provided by this work enables us to calculate gamma-ray, hard X-ray, radio, and neutrino signals, which originate from cosmic rays accelerated by the diffusive shock acceleration mechanism. We apply our results to SN IIn 2010jl and SN Ib/IIn 2014C, for which the model parameters can be determined from the multi-wavelength data. For SN 2010jl, the more promising case, by using the the latest Fermi Large Area Telescope (LAT) Pass 8 data release, we derive new constraints on the cosmic-ray energy fraction, <0.05-0.1. We also find that the late-time radio data of these interacting SNe are consistent with our model. Further multi-messenger and multi-wavelength observations of nearby interacting SNe should give us new insights into the diffusive shock acceleration in dense environments as well as pre-SN mass-loss mechanisms.Comment: 16 pages, 10 figures, 3 tables, accepted for publication in ApJ. Results and conclusions unchange

    High Energy neutrino signals from the Epoch of Reionization

    Get PDF
    We perform a new estimate of the high energy neutrinos expected from GRBs associated with the first generation of stars in light of new models and constraints on the epoch of reionization and a more detailed evaluation of the neutrino emission yields. We also compare the diffuse high energy neutrino background from Population III stars with the one from "ordinary stars" (Population II), as estimated consistently within the same cosmological and astrophysical assumptions. In disagreement with previous literature, we find that high energy neutrinos from Population III stars will not be observable with current or near future neutrino telescopes, falling below both IceCube sensitivity and atmospheric neutrino background under the most extreme assumptions for the GRB rate. This rules them out as a viable diagnostic tool for these still elusive metal-free stars.Comment: 9 pages, 5 figures

    Liquefaction Analysis of Sand Deposits Based on Cyclic Elasto-Piasticity

    Get PDF
    The one-dimentional liquefaction analysis of sand deposits is performed by using the theory of two-phase mixture and the elasto-plastic constitutive equations of sand that can describe the dynamic dilatancy effect of soil under cyclic loading. The analytical results obtained by finite difference method explain well the dynamic behavior of sand deposits including liquefaction phenomena. Especially, the stress path which is particular to liquefaction is presented by considering a horizontally confined condition

    Very-High-Energy Gamma-Ray Signal from Nuclear Photodisintegration as a Probe of Extragalactic Sources of Ultrahigh-Energy Nuclei

    Get PDF
    It is crucial to identify the ultrahigh-energy cosmic-ray (UHECR) sources and probe their unknown properties. Recent results from the Pierre Auger Observatory favor a heavy nuclear composition for the UHECRs. Under the requirement that heavy nuclei survive in these sources, using gamma-ray bursts as an example, we predict a diagnostic gamma-ray signal, unique to nuclei - the emission of de-excitation gamma rays following photodisintegration. These gamma rays, boosted from MeV to TeV-PeV energies, may be detectable by gamma-ray telescopes such as VERITAS, HESS, and MAGIC, and especially the next-generation CTA and AGIS. They are a promising messenger to identify and study individual UHE nuclei accelerators.Comment: 7 pages, 4 figures, accepted for publication in PRD, with extended descriptions. Conclusions unchange

    Heterotopic heart transplantation in the rat receiving FK-506 alone or with cyclosporine.

    Get PDF
    In rats, FK significantly prolonged heterotopic heart graft survival over a wide dose range when given for 2 weeks starting on the day of the operation. Brief courses of FK for one to four days preoperatively, and especially beginning four days postoperatively, allowed long subsequent survival of heart grafts in otherwise untreated recipients. The seeming acceptance of the grafts with postoperative FK treatment was largely but not exclusively donor specific when tested eight days after the last FK dose by second grafts from the same donor v third-party donor grafts. FK in minimally therapeutic doses was synergistic with suboptimal doses of CyA

    Weighted Radon transforms for which the Chang approximate inversion formula is precise

    Full text link
    We describe all weighted Radon transforms on the plane for which the Chang approximate inversion formula is precise. Some subsequent results, including the Cormack type inversion for these transforms, are also given

    Pressure Raman effects and internal stress in network glasses

    Get PDF
    Raman scattering from binary GexSe1-x glasses under hydrostatic pressure shows onset of a steady increase in the frequency of modes of corner-sharing GeSe4 tetrahedral units when the external pressure P exceeds a threshold value Pc. The threshold pressure Pc(x) decreases with x in the 0.15 < x < 0.20 range, nearly vanishes in the 0.20 < x < 0.25 range, and then increases in the 0.25 < x < 1/3 range. These Pc(x) trends closely track those in the non-reversing enthalpy, DHnr(x), near glass transitions (Tgs), and in particular, both DHnr(x) and Pc(x) vanish in the reversibility window (0.20 < x < 0.25). It is suggested that Pc provides a measure of stress at the Raman active units; and its vanishing in the reversibility window suggests that these units are part of an isostatically rigid backbone. Isostaticity also accounts for the non-aging behavior of glasses observed in the reversibility window
    • …
    corecore