331 research outputs found

    Adaptive experimental design for one-qubit state estimation with finite data based on a statistical update criterion

    Full text link
    We consider 1-qubit mixed quantum state estimation by adaptively updating measurements according to previously obtained outcomes and measurement settings. Updates are determined by the average-variance-optimality (A-optimality) criterion, known in the classical theory of experimental design and applied here to quantum state estimation. In general, A-optimization is a nonlinear minimization problem; however, we find an analytic solution for 1-qubit state estimation using projective measurements, reducing computational effort. We compare numerically two adaptive and two nonadaptive schemes for finite data sets and show that the A-optimality criterion gives more precise estimates than standard quantum tomography.Comment: 15 pages, 7 figure

    Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images

    Get PDF
    Accurate Computer-Assisted Diagnosis, associated with proper data wrangling, can alleviate the risk of overlooking the diagnosis in a clinical environment. Towards this, as a Data Augmentation (DA) technique, Generative Adversarial Networks (GANs) can synthesize additional training data to handle the small/fragmented medical imaging datasets collected from various scanners; those images are realistic but completely different from the original ones, filling the data lack in the real image distribution. However, we cannot easily use them to locate disease areas, considering expert physicians' expensive annotation cost. Therefore, this paper proposes Conditional Progressive Growing of GANs (CPGGANs), incorporating highly-rough bounding box conditions incrementally into PGGANs to place brain metastases at desired positions/sizes on 256 X 256 Magnetic Resonance (MR) images, for Convolutional Neural Network-based tumor detection; this first GAN-based medical DA using automatic bounding box annotation improves the training robustness. The results show that CPGGAN-based DA can boost 10% sensitivity in diagnosis with clinically acceptable additional False Positives. Surprisingly, further tumor realism, achieved with additional normal brain MR images for CPGGAN training, does not contribute to detection performance, while even three physicians cannot accurately distinguish them from the real ones in Visual Turing Test.Comment: 9 pages, 7 figures, accepted to CIKM 2019 (acceptance rate: 19%

    Quantum cobwebs: Universal entangling of quantum states

    Full text link
    Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA state, local operation and classical communication we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state. We quantify the amount of classical and quantum resources required to create universal entangled states. This is possibly a strongest form of quantum bit hiding with multiparties.Comment: Invited talk in II Winter Institute on FQTQO: Quantum Information Processing, held at S. N. Bose Center for Basic Science, Kolkata, during Jan 2-11, 2002. (To appear in Pramana-J. of Physics, 2002.

    Mixedness and teleportation

    Get PDF
    We show that on exceeding a certain degree of mixedness (as quantified by the von Neumann entropy), entangled states become useless for teleporatation. By increasing the dimension of the entangled systems, this entropy threshold can be made arbitrarily close to maximal. This entropy is found to exceed the entropy threshold sufficient to ensure the failure of dense coding.Comment: 6 pages, no figure

    Quantum Cloning Machines of a d-level System

    Full text link
    The optimal N to M (M>NM>N) quantum cloning machines for the d-level system are presented. The unitary cloning transformations achieve the bound of the fidelity.Comment: Revtex, 4 page

    Diagonal-unitary 2-designs and their implementations by quantum circuits

    Full text link
    We study efficient generations of random diagonal-unitary matrices, an ensemble of unitary matrices diagonal in a given basis with randomly distributed phases for their eigenvalues. Despite the simple algebraic structure, they cannot be achieved by quantum circuits composed of a few-qubit diagonal gates. We introduce diagonal-unitary tt-designs and present two quantum circuits that implement diagonal-unitary 22-designs with the computational basis in NN-qubit systems. One is composed of single-qubit diagonal gates and controlled-phase gates with randomized phases, which achieves an exact diagonal-unitary 22-design after applying the gates on all pairs of qubits. The number of required gates is N(N1)/2N(N-1)/2. If the controlled-Z gates are used instead of the controlled-phase gates, the circuit cannot achieve an exact 22-design, but achieves an ϵ\epsilon-approximate 22-design by applying gates on randomly selected pairs of qubits. Due to the random choice of pairs, the circuit obtains extra randomness and the required number of gates is at most O(N2(N+log1/ϵ))O(N^2(N+\log1/\epsilon)). We also provide an application of the circuits, a protocol of generating an exact 22-design of random states by combining the circuits with a simple classical procedure requiring O(N)O(N) random classical bits.Comment: Revised, 22 pages + Appendix, 3 figures; major revision from v2; presentation is improved in v4; v5 is a published versio

    Classification of multipartite entangled states by multidimensional determinants

    Full text link
    We find that multidimensional determinants "hyperdeterminants", related to entanglement measures (the so-called concurrence or 3-tangle for the 2 or 3 qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the n4n \geq 4 qubits), contrary to the widely known bipartite or 3-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.Comment: revtex4, 10 pages, 4 eps figures with psfrag; v2 title changed, 1 appendix added, to appear in Phys. Rev.

    Four Photon Entanglement from Down Conversion

    Get PDF
    Double-pair emission from type-II parametric down conversion results in a highly entangled 4-photon state. Due to interference, which is similar to bunching from thermal emission, this state is not simply a product of two pairs. The observation of this state can be achieved by splitting the two emission modes at beam splitters and subsequent detection of a photon in each output. Here we describe the features of this state and give a Bell theorem for a 4-photon test of local realistic hidden variable theories.Comment: 5 pages, 1 figure, submitted to PR

    Separability and distillability of multiparticle quantum systems

    Get PDF
    We present a family of 3--qubit states to which any arbitrary state can be depolarized. We fully classify those states with respect to their separability and distillability properties. This provides a sufficient condition for nonseparability and distillability for arbitrary states. We generalize our results to NN--particle states.Comment: replaced with published version (Phys.Rev.Lett.), in parts rewritten and clarifie
    corecore