2,026 research outputs found

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Galactic periodicity and the oscillating G model

    Get PDF
    We consider the model involving the oscillation of the effective gravitational constant that has been put forward in an attempt to reconcile the observed periodicity in the galaxy number distribution with the standard cosmological models. This model involves a highly nonlinear dynamics which we analyze numerically. We carry out a detailed study of the bound that nucleosynthesis imposes on this model. The analysis shows that for any assumed value for Ω\Omega (the total energy density) one can fix the value of Ωbar\Omega_{\rm bar} (the baryonic energy density) in such a way as to accommodate the observational constraints coming from the 4He^4{\rm He} primordial abundance. In particular, if we impose the inflationary value Ω=1\Omega=1 the resulting baryonic energy density turns out to be Ωbar0.021\Omega_{\rm bar}\sim 0.021. This result lies in the very narrow range 0.016Ωbar0.0260.016 \leq \Omega_{\rm bar} \leq 0.026 allowed by the observed values of the primordial abundances of the other light elements. The remaining fraction of Ω\Omega corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for figures. A more careful study of the model appears in gr-qc/960603

    Bmp signaling represses Vegfa to promote outflow tract cushion development

    Get PDF
    Congenital heart disease (CHD) is a devastating anomaly that affects ∼1% of live births. Defects of the outflow tract (OFT) make up a large percentage of human CHD. We investigated Bmp signaling in mouse OFT development by conditionally deleting both Bmp4 and Bmp7 in the second heart field (SHF). SHF Bmp4/7 deficiency resulted in defective epithelial to mesenchymal transition (EMT) and reduced cardiac neural crest ingress, with resultant persistent truncus arteriosus. Using a candidate gene approach, we found that Vegfa was upregulated in the Bmp4/7 mutant hearts. To determine if Vegfa is a downstream Bmp effector during EMT, we examined whether Vegfa is transcriptionally regulated by the Bmp receptor-regulated Smad. Our findings indicate that Smad directly binds to Vegfa chromatin and represses Vegfa transcriptional activity. We also found that Vegfa is a direct target for the miR-17-92 cluster, which is also regulated by Bmp signaling in the SHF. Deletion of miR-17-92 reveals similar phenotypes to Bmp4/7 SHF deletion. To directly address the function of Vegfa repression in Bmp-mediated EMT, we performed ex vivo explant cultures from Bmp4/7 and miR-17-92 mutant hearts. EMT was defective in explants from the Bmp4/7 double conditional knockout (dCKO; Mef2c-Cre;Bmp4/7(f/f)) and miR-17-92 null. By antagonizing Vegfa activity in explants, EMT was rescued in Bmp4/7 dCKO and miR-17-92 null culture. Moreover, overexpression of miR-17-92 partially suppressed the EMT defect in Bmp4/7 mutant embryos. Our study reveals that Vegfa levels in the OFT are tightly controlled by Smad- and microRNA-dependent pathways to modulate OFT development

    Dissipation in equations of motion of scalar fields

    Get PDF
    The methods of non-equilibrium quantum field theory are used to investigate the possibility of representing dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is commonly included in phenomenological inflaton equations of motion. A sequence of approximations is exhibited which reduces the non-equilibrium theory to a set of local evolution equations. However, the adiabatic solution to these evolution equations which is needed to obtain a local equation of motion for the expectation value is not well defined; nor, therefore, is the friction coefficient. Thus, a non-equilibrium treatment is essential, even for a system that remains close to thermal equilibrium, and the formalism developed here provides one means of achieving this numerically.Comment: 17 pages, 5 figure

    Comparison of extracellular-type-kyoto solution and perfadex as a preservation solution in a pig ex vivo lung perfusion model: impact of potassium level.

    Get PDF
    Background:The ex vivo lung perfusion (EVLP) system has been used successfully to assess donor lungs. Perfadex (PX) is usually the flush and preservation solution in EVLP systems. We have used the extracellular-type–Kyoto (ET-K) solution containing 44 mEq/L potassium for clinical lung transplantation, investigating whether it rather than PX affects the EVLP system.  Methods:We used domestic slaughterhouse pigs to analyze the EVLP system. After 20-minute warm ischemia and 6-hour cold ischemia, EVLP was performed for 2 hours. Pig heart-lung blocks were divided into the PX (n = 5) and ET-K (n = 5) groups depending on the flush/cold preservation solution. At the beginning, we discarded the first 100 mL of effluent in the PX group and the first 200 mL in the ET-K group. We measured pulmonary physiological data and potassium levels.  Results:In both groups, perfusion for 2 hours showed no differences between the 2 groups with respect to the final flow, pulmonary arterial pressure, pulmonary vascular resistance, PaO2/FiO2, and shunt fraction. The potassium level in the perfusate was 4.4 mEq/L for the PX and 5.4 mEq/L for the ET-K group.  Conclusion:The pig EVLP system was not affected when ET-K was used instead of PX as the flush/preservation solution. The initial 200 mL of effluent should be discarded when using the ET-K to ensure that the potassium level does not increase

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Cosmic structures via Bose Einstein condensation and its collapse

    Get PDF
    We develop our novel model of cosmology based on the Bose-Einstein condensation. This model unifies the Dark Energy and the Dark Matter, and predicts multiple collapse of condensation, followed by the final acceleration regime of cosmic expansion. We first explore the generality of this model, especially the constraints on the boson mass and condensation conditions. We further argue the robustness of this model over the wide range of parameters of mass, self coupling constant and the condensation rate. Then the dynamics of BEC collapse and the preferred scale of the collapse are studied. Finally, we describe possible observational tests of our model, especially, the periodicity of the collapses and the gravitational wave associated with them.Comment: 21 pages, 5 figure
    corecore