10 research outputs found

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik

    SMART: identification and annotation of domains from signalling and extracellular protein sequences.

    Get PDF
    SMART is a simple modular architecture research tool and database that provides domain identification and annotation on the WWW (http://coot.embl-heidelberg.de/SMART). The tool compares query sequences with its databases of domain sequences and multiple alignments whilst concurrently identifying compositionally biased regions such as signal peptide, transmembrane and coiled coil segments. Annotated and unannotated regions of the sequence can be used as queries in searches of sequence databases. The SMART alignment collection represents more than 250 signalling and extracellular domains. Each alignment is curated to assign appropriate domain boundaries and to ensure its quality. In addition, each domain is annotated extensively with respect to cellular localisation, species distribution, functional class, tertiary structure and functionally important residues

    Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum

    No full text
    Genetic alterations in tumor cells often lead to the emergence of growth-stimulatory autocrine and paracrine signals, involving overexpression of secreted peptide growth factors, cytokines, and hormones. Increased levels of these soluble proteins may be exploited for cancer diagnosis and management or as points of therapeutic intervention. Here, we combined the use of controlled vocabulary terms and sequence-based algorithms to predict genes encoding secreted proteins from among ≈12,500 sequences represented on oligonucleotide microarrays. Expression of these genes was queried in 150 carcinomas from 10 anatomic sites of origin and compared with 46 normal tissues derived from the corresponding sites of tumor origin and other body tissues and organs. Of 74 different genes identified as overexpressed in cancer tissues, several encode proteins with demonstrated clinical diagnostic application, such as α-fetoprotein in liver carcinoma, and kallikreins 6 and 10 in ovarian cancer, or therapeutic utility, such as gastrin-releasing peptide/bombesin in lung carcinomas. We show that several of the other candidate genes encode proteins with high levels of tumor-associated expression by immunohistochemistry on tissue microarrays and further demonstrate significantly elevated levels of another novel candidate protein, macrophage inhibitory cytokine 1, a distant member of the tranforming growth factor-β superfamily, in the serum of patients with metastatic prostate, breast, and colorectal carcinomas. Our results suggest that the combination of annotation/protein sequence analysis, transcript profiling, immunohistochemistry, and immunoassay is a powerful approach for delineating candidate biomarkers with potential clinical significance and may be broadly applicable to other human diseases
    corecore