19,873 research outputs found

    Variational derivation of equation for generalized pair correlation function

    Get PDF
    The wavefunction of a system is explicitly written down in a fully anti-symmetric way between a fermion pair and a medium, and the equations for each one of them are derived from the variation of total energy for bound systems and by forming appropriate scalar products for continuum states. High-energy particles, such as protons, electrons, and nuclei impinging upon spacecraft, produce secondary radiations. In order to protect the internal environment of spacecraft from these radiations, their intensities are determined in many instances theoretically, and an appropriate program has been developed in the High Energy Science Branch. The purpose of this research is to investigate the problem of indistinguishability of an incident projectile with one of the same in a target

    Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.

    Get PDF
    Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net movement, we find instead that microtubules move unidirectionally for several microns (corresponding to hundreds of ATPase cycles by a motor) but continually switch between kinesin-directed and dynein-directed transport. The velocities in the plus-end (0.2-0.3 microns/s) and minus-end (3.5-4 microns/s) directions were approximately half those produced by kinesin (0.5 microns/s) and ciliary dynein (6.7 microns/s) alone, indicating that the motors not contributing to movement can interact with and impose a drag upon the microtubule. By comparing two dyneins with different duty ratios (percentage of time spent in a strongly bound state during the ATPase cycle) and varying the nucleotide conditions, we show that the microtubule attachment times of the two opposing motors as well as their relative numbers determine which motor predominates in this assay. Together, these findings are consistent with a model in which kinesin-induced movement of a microtubule induces a negative strain in attached dyneins which causes them to dissociate before entering a force-generating state (and vice versa); reversals in the direction of transport may require the temporary dissociation of the transporting motor from the microtubule. The bidirectional movements described here are also remarkably similar to the back-and-forth movements of chromosomes during mitosis and membrane vesicles in fibroblasts. These results suggest that the underlying mechanical properties of motor proteins, at least in part, may be responsible for reversals in microtubule-based transport observed in cells

    The Early Restart Algorithm

    Get PDF
    Consider an algorithm whose time to convergence is unknown (because of some random element in the algorithm, such as a random initial weight choice for neural network training). Consider the following strategy. Run the algorithm for a specific time T. If it has not converged by time T, cut the run short and rerun it from the start (repeat the same strategy for every run). This so-called restart mechanism has been proposed by Fahlman (1988) in the context of backpropagation training. It is advantageous in problems that are prone to local minima or when there is a large variability in convergence time from run to run, and may lead to a speed-up in such cases. In this article, we analyze theoretically the restart mechanism, and obtain conditions on the probability density of the convergence time for which restart will improve the expected convergence time. We also derive the optimal restart time. We apply the derived formulas to several cases, including steepest-descent algorithms

    WTO’s Trade Liberalisation, Agricultural Growth, and Poverty Alleviation in Pakistan

    Get PDF
    Pakistan is an agrarian based developing country, and like many other developing countries, its agriculture sector is subjected to domestic forces of demand and supply and changes in prices at international level, as well. More specifically, in the late 1990s, the World Trade Organisation (WTO) emerged as one the major players affecting such market changes more vigorously at international arena. The WTO’s Agreement on Agriculture, which was established as a result of the 1986–94 Uraguay Round talks, requires, for both developed and developing countries, to initiate a process of reforms in their agrarian economies with the objective of establishing a fair and market oriented agricultural trading system through multilateral trade negotiations. This Agreement on Agriculture (AoA) specifically asks for major reductions in export subsidies, domestic support and import barriers on agricultural products to achieve this objective, the WTO’s Agreement of Agriculture [WTO (2001)] had set the following quantitative targets for cuts in each of the three specified area, namely import tariffs, domestic supports and export subsidies.

    Risk management of precious metals

    Get PDF
    This paper examines volatility and correlation dynamics in price returns of gold, silver, platinum and palladium, and explores the corresponding risk management implications for market risk and hedging. Value-at-Risk (VaR) is used to analyze the downside market risk associated with investments in precious metals, and to design optimal risk management strategies. We compute the VaR for major precious metals using the calibrated RiskMetrics, different GARCH models, and the semi-parametric Filtered Historical Simulation approach. Different risk management strategies are suggested, and the best approach for estimating VaR based on conditional and unconditional statistical tests is documented. The economic importance of the results is highlighted by assessing the daily capital charges from the estimated VaRs. The risk-minimizing portfolio weights and dynamic hedge ratios between different metal groups are also analyzed.risk management;value-at-risk;conditional volatility;precious metals

    Suppressing Super-Horizon Curvature Perturbations?

    Full text link
    We consider the possibility of suppressing superhorizon curvature perturbations after the end of the ordinary slow-roll inflationary stage. This is the opposite of the curvaton limit. We assume that large curvature perturbations are created by the inflaton and investigate if they can be diluted or suppressed by a second very homogeneous field which starts to dominate the energy density of the universe shortly after the end of inflation. We show explicit that the gravitational sourcing of inhomogeneities from the more inhomogeneous fluid to the more homogeneous fluid makes the suppression difficult if not impossible to achieve.Comment: 10 pages, 1 figure. Important revision. Conclusions more negativ

    Geometrical Aspects Of BRST Cohomology In Augmented Superfield Formalism

    Full text link
    In the framework of augmented superfield approach, we provide the geometrical origin and interpretation for the nilpotent (anti-)BRST charges, (anti-)co-BRST charges and a non-nilpotent bosonic charge. Together, these local and conserved charges turn out to be responsible for a clear and cogent definition of the Hodge decomposition theorem in the quantum Hilbert space of states. The above charges owe their origin to the de Rham cohomological operators of differential geometry which are found to be at the heart of some of the key concepts associated with the interacting gauge theories. For our present review, we choose the two (1+1)(1 + 1)-dimensional (2D) quantum electrodynamics (QED) as a prototype field theoretical model to derive all the nilpotent symmetries for all the fields present in this interacting gauge theory in the framework of augmented superfield formulation and show that this theory is a {\it unique} example of an interacting gauge theory which provides a tractable field theoretical model for the Hodge theory.Comment: LaTeX file, 25 pages, Ref. [49] updated, correct page numbers of the Journal are give

    Nonmodal energy growth and optimal perturbations in compressible plane Couette flow

    Full text link
    Nonmodal transient growth studies and estimation of optimal perturbations have been made for the compressible plane Couette flow with three-dimensional disturbances. The maximum amplification of perturbation energy over time, GmaxG_{\max}, is found to increase with increasing Reynolds number Re{\it Re}, but decreases with increasing Mach number MM. More specifically, the optimal energy amplification GoptG_{\rm opt} (the supremum of GmaxG_{\max} over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as MM increases. The corresponding optimal streamwise wavenumber, αopt\alpha_{\rm opt}, is non-zero at M=0, increases with increasing MM, reaching a maximum for some value of MM and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers, the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2, the reasons for which are shown to be tied to the dominance of some terms in the linear stability operator. Based on a detailed nonmodal energy analysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid {\it algebraic} instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E˙1\dot{\mathcal E}_1) in the same limit
    corecore