2,162 research outputs found

    Ground-state properties of the one-dimensional electron liquid

    Get PDF
    We present calculations of the energy, pair-correlation function (PCF), static structure factor (SSF), and momentum density (MD) for the one-dimensional electron gas using the quantum Monte Carlo method. We are able to resolve peaks in the SSF at even-integer multiples of the Fermi wave vector, which grow as the coupling is increased. Our MD results show an increase in the effective Fermi wave vector as the interaction strength is raised in the paramagnetic harmonic wire; this appears to be a result of the vanishing difference between the wave functions of the paramagnetic and ferromagnetic systems. We have extracted the Luttinger liquid exponent from our MDs by fitting to data around kF, finding good agreement between the exponent of the ferromagnetic infinitely thin wire and the ferromagnetic harmonic wire

    Electrostatic- and Parallel Magnetic Field- Tuned Two Dimensional Superconductor-Insulator Transitions

    Full text link
    The 2D superconductor-insulator transition in disordered ultrathin amorphous bismuth films has been tuned both by electrostatic electron doping using the electric field effect and by the application of parallel magnetic fields. Electrostatic doping was carried out in both zero and nonzero magnetic fields, and magnetic tuning was conducted at multiple strengths of electrostatically induced superconductivity. The transitions were analyzed using finite size scaling with critical exponent products nu*z = 0.65-0.7. The parallel critical magnetic field increased with electron transfer as (dn_c-dn)^0.33, where dn is the electron transfer and dn_c is its critical value, and the critical resistance decreased linearly with dn. However at lower temperatures, in the insulating regime, the resistance became larger than expected from extrapolation of its temperature dependence at higher temperatures, and scaling failed. These observations imply that although the electrostatic- and parallel magnetic field- tuned superconductor-insulator transitions would appear to belong to the same universality class and to be delineated by a robust phase boundary that can be crossed either by tuning electron density or magnetic field, in the case of the field-tuned transition at the lowest temperatures, some different type of physical behavior turns on in the insulating regime.Comment: About 11 pages, with 14 figures. To be submitted to Phys Rev

    Difference of optical conductivity between one- and two-dimensional doped nickelates

    Full text link
    We study the optical conductivity in doped nickelates, and find the dramatic difference of the spectrum in the gap (ω\omega\alt4 eV) between one- (1D) and two-dimensional (2D) nickelates. The difference is shown to be caused by the dependence of hopping integral on dimensionality. The theoretical results explain consistently the experimental data in 1D and 2D nickelates, Y2x_{2-x}Cax_xBaNiO5_5 and La2x_{2-x}Srx_xNiO4_4, respectively. The relation between the spectrum in the X-ray aborption experiments and the optical conductivity in La2x_{2-x}Srx_xNiO4_4 is discussed.Comment: RevTeX, 4 pages, 4 figure

    Model-based registration for pneumothorax deformation analysis using intraoperative cone-beam CT images

    Get PDF
    [2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 20-24 July 2020, Montreal, QC, Canada]Because the lung deforms during surgery because of pneumothorax, it is important to be able to track the location of a tumor. Deformation of the whole lung can be estimated using intraoperative cone-beam CT (CBCT) images. In this study, we used deformable mesh registration methods for paired CBCT images in the inflated and deflated states, and analyzed their deformation. We proposed a deformable mesh registration framework for deformations of partial organ shapes involving large deformation and rotation. Experimental results showed that the proposed methods reduced errors in point-to-point correspondence. As a result of registration using surgical clips placed on the lung surface during imaging, it was confirmed that an average error of 3.9 mm occurred in eight cases. The result of analysis showed that both tissue rotation and contraction had large effects on displacement

    Linear-response theory of spin Seebeck effect in ferromagnetic insulators

    Full text link
    We formulate a linear response theory of the spin Seebeck effect, i.e., a spin voltage generation from heat current flowing in a ferromagnet. Our approach focuses on the collective magnetic excitation of spins, i.e., magnons. We show that the linear-response formulation provides us with a qualitative as well as quantitative understanding of the spin Seebeck effect observed in a prototypical magnet, yttrium iron garnet.Comment: 6 pages, 3 figures. Added references and revised argument on the length scales at the end of Sec.
    corecore