4,694 research outputs found

    One-step replica symmetry breaking solution for fermionic Ising spin glass in a transverse field

    Full text link
    The fermionic Ising spin glass models in a transverse field are investigated in a Grassmann path integral formalism. The Parisi's scheme of one-step replica symmetry breaking (RSB) is used within the static ansatz. This formalism has already been applied in a theory in which mm (Parisi's block-size parameter) is taken as a constant (PRB 72, 014447 (2005)). Now, it is extended to consider mm as a variational parameter. In this case, the results show that RSB is present when T→0T\to0, in which the system is driven by quantum fluctuations.Comment: 8 pages, 3 figures, accepted for publication as a Brief Report in Phys. Rev.

    A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    Full text link
    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements

    Nonlinear ac susceptibility studies of high-TcT_c rings: Influence of the structuring method and determination of the flux creep exponent

    Full text link
    We have studied the influence of the patterning procedure on the critical current density of high-TcT_c YBa2_2Cu3_3O7−δ_{7-\delta} thin rings using the nonlinear ac susceptibility method. At no applied dc magnetic field we have found that laser ablation degrades strongly the critical current density whereas ion beam etching has only a weak influence on it. From the measurements at different frequencies and dc magnetic fields we analyzed the influence of flux creep and obtained the field dependence of the flux creep exponent. Our data reconfirm the recently observed scaling relation for the nonlinear susceptibility response of type-II superconductors.Comment: 10 pages, 12 figure

    Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Get PDF
    The behavior of the nonlinear susceptibility χ3\chi_3 and its relation to the spin-glass transition temperature TfT_f, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT\lambda_{\rm AT} (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature TfT_f can be traced by a divergence in the spin-glass susceptibility χSG\chi_{\rm SG}, which presents a term inversely proportional to the replicon λAT\lambda_{\rm AT}. As a result of a relation between χSG\chi_{\rm SG} and χ3\chi_3, the latter also presents a divergence at TfT_f, which comes as a direct consequence of λAT=0\lambda_{\rm AT}=0 at TfT_f. However, our results show that, in the presence of random fields, χ3\chi_3 presents a rounded maximum at a temperature T∗T^{*}, which does not coincide with the spin-glass transition temperature TfT_f (i.e., T∗>TfT^* > T_f for a given applied random field). Thus, the maximum value of χ3\chi_3 at T∗T^* reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3\chi_3 still maintains a dependence on the replicon λAT\lambda_{\rm AT}, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHox_xY1−x_{1-x}F4_4 compound.Comment: accepted for publication in PR

    A van Hemmen-Kondo model for disordered strongly correlated electron systems

    Full text link
    We present here a theoretical model in order to describe the competition between the Kondo effect and the spin glass behavior. The spin glass part of the starting Hamiltonian contains Ising spins with an intersite exchange interaction given by the local van Hemmen model, while the Kondo effect is described as usual by the intrasite exchange JKJ_K. We obtain, for large JKJ_K values, a Kondo phase and, for smaller JKJ_K values, a succession, with decreasingComment: 14 pages, 4 figures, accepted for publication in Phys. Rev.
    • …
    corecore