191 research outputs found

    The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans

    Get PDF
    Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules

    Fixed-N Superconductivity: The Crossover from the Bulk to the Few-Electron Limit

    Full text link
    We present a truly canonical theory of superconductivity in ultrasmall metallic grains by variationally optimizing fixed-N projected BCS wave-functions, which yields the first full description of the entire crossover from the bulk BCS regime (mean level spacing dd \ll bulk gap Δ~\tilde\Delta) to the ``fluctuation-dominated'' few-electron regime (dΔ~d\gg\tilde\Delta). A wave-function analysis shows in detail how the BCS limit is recovered for dΔ~d\ll \tilde \Delta, and how for dΔ~d \gg \tilde \Delta pairing correlations become delocalized in energy space. An earlier grand-canonical prediction for an observable parity effect in the spectral gaps is found to survive the fixed-N projection.Comment: 4 pages, 3 figures, RevTeX, V2: minor charges to mach final printed versio

    Pressure effects on the transition temperature and the magnetic field penetration depth in the pyrochlore superconductor RbOs_2O_6

    Full text link
    We report magnetization measurements under high hydrostatic pressure in the newly discovered pyrochlore superconductor RbOs_2O_6 (T_c\simeq6.3K at p=0). A pronounced and {\it positive} pressure effect (PE) on T_c with dT_c/dp =0.090(1)K/kbar was observed, whereas no PE on the magnetic penetration depth \lambda was detected. The relative pressure shift of T_c [ dlnT_c/dp \simeq 1.5%/kbar] is comparable with the highest values obtained for highly underdoped high-temperature cuprate superconductors. Our results suggest that RbOs_2O_6 is an adiabatic BCS-type superconductor.Comment: 11 pages, 4 figure

    A small superconducting grain in the canonical ensemble

    Full text link
    By means of the Lanczos method we analyze superconducting correlations in ultrasmall grains at fixed particle number. We compute the ground state properties and the excitation gap of the pairing Hamiltonian as a function of the level spacing δ\delta. Both quantities turn out to be parity dependent and universal functions of the ratio δ/Δ\delta/\Delta (Δ\Delta is the BCS gap). We then characterize superconductivity in the canonical ensemble from the scaling behavior of correlation functions in energy space.Comment: 11 pages Revtex, 5 figures .ep

    Mixed state properties of superconducting MgB2 single crystals

    Full text link
    We report on measurements of the magnetic moment in superconducting MgB2 single crystals. We find \mu_0H_{c2}^c(0) = 3.2 T, \mu_0H_{c2}^{ab}(0) = 14.5 T, \gamma = 4.6, \mu_0H_c(0) = 0.28 T, and \kappa(T_c) = 4.7. The standard Ginzburg-Landau and London model relations lead to a consistent data set and indicate that MgB2 is a clean limit superconductor of intermediate coupling strength with very pronounced anisotropy effects

    Re-entrant spin susceptibility of a superconducting grain

    Full text link
    We study the spin susceptibility chi of a small, isolated superconducting grain. Due to the interplay between parity effects and pairing correlations, the dependence of chi on temperature T is qualitatively different from the standard BCS result valid in the bulk limit. If the number of electrons on the grain is odd, chi shows a re-entrant behavior as a function of temperature. This behavior persists even in the case of ultrasmall grains where the mean level spacing is much larger than the BCS gap. If the number of electrons is even, chi(T) is exponentially small at low temperatures.Comment: 9 pages, 3 figures. To be published in PR

    Directional emission of light from a nano-optical Yagi-Uda antenna

    Full text link
    The plasmon resonance of metal nanoparticles can enhance and direct light from optical emitters in much the same way that radio frequency (RF) antennas enhance and direct the emission from electrical circuits. In the RF regime, a typical antenna design for high directivity is the Yagi-Uda antenna, which basically consists of a one-dimensional array of antenna elements driven by a single feed element. Here, we present the experimental demonstration of directional light emission from a nano-optical Yagi-Uda antenna composed of an array of appropriately tuned gold nanorods. Our results indicate that nano-optical antenna arrays are a simple but efficient tool for the spatial control of light emission.Comment: 4 pages, including 4 figure

    Spin-Orbit-Induced Magnetic Anisotropy for Impurities in Metallic Samples I. Surface Anisotropy

    Full text link
    Motivated by the recent measurements of Kondo resistivity in thin films and wires, where the Kondo amplitude is suppressed for thinner samples, the surface anisotropy for magnetic impurities is studied. That anisotropy is developed in those cases where in addition to the exchange interaction with the impurity there is strong spin-orbit interaction for conduction electrons around the impurity in the ballistic region. The asymmetry in the neighborhood of the magnetic impurity exhibits the anisotropy axis nn which, in the case of a plane surface, is perpendicular to the surface. The anisotropy energy is ΔE=Kd(nS)2\Delta E=K_d (nS)^2 for spin SS, and the anisotropy constant KdK_d is inversionally proportional to distance dd measured from the surface and Kd>0K_d>0. Thus at low temperature the spin is frozen in a singlet or doublet of lowest energy. The influence of that anisotropy on the electrical resistivity is the subject of the following paper (part II).Comment: 28 pages, RevTeX (using epsfig), 8 eps figures included, submitted to PR

    Electrical Control of Plasmon Resonance with Graphene

    Full text link
    Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale
    corecore