152 research outputs found

    A pathogenetic link between non-alcoholic fatty liver disease and celiac disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) has recently been recognized as the leading cause of the abnormalities in the liver function tests in the Western countries. Celiac disease (CD) is a permanent immunological intolerance to gluten proteins in genetically predisposed individuals. CD has been reported in 4-13 % of the cases with steatohepatitis, although the pathogenesis of the liver steatosis in CD patients is unclear. Based on the literature data, it can be concluded that the inclusion of serological markers of CD should be a part of the general workup in the patients with steatosis when other causes of the liver disease are excluded and in the patients with NAFLD when metabolic risk factors are not evident

    Dietary polyphenols and non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD), which is emerging as a major public health issue worldwide, is characterized by a wide spectrum of liver disorders, ranging from simple fat accumulation in hepatocytes, also known as steatosis, to non-alcoholic steatohepatitis (NASH) and cirrhosis. At present, the pharmacological treatment of NAFLD is still debated and dietary strategies for the prevention and the treatment of this condition are strongly considered. Polyphenols are a group of plant-derived compounds whose anti-inflammatory and antioxidant properties are associated with a low prevalence of metabolic diseases, including obesity, hypertension, and insulin resistance. Since inflammation and oxidative stress are the main risk factors involved in the pathogenesis of NAFLD, recent studies suggest that the consumption of polyphenol-rich diets is involved in the prevention and treatment of NAFLD. However, few clinical trials are available on human subjects with NAFLD. Here, we reviewed the emerging existing evidence on the potential use of polyphenols to treat NAFLD. After introducing the physiopathology of NAFLD, we focused on the most investigated phenolic compounds in the setting of NAFLD and described their potential benefits, starting from basic science studies to animal models and human trials

    Attenuation of Helicobacter pylori-induced gastric inflammation by prior cag− strain (AM1) infection in C57BL/6 mice

    Get PDF
    Helicobacter pylori, colonize in stomach of ~50% of the world population. cag pathogenicity Island of H. pylori is one of the important virulent factors that attributed to gastric inflammation. Coinfection with H. pylori strain with different genetic makeup alters the degree of pathogenicity and susceptibility towards antibiotics. The present study investigates host immunomodulatory effects of H. pylori infection by both cag+ strain (SS1) and cag− strain (AM1). C57BL/6 mice were infected with AM1 or SS1 strain as well as AM1 followed by SS1 (AM1/SS1) and vice versa. Results: Mice infected with AM1/SS1 strain exhibited less gastric inflammation and reduced proMMP9 and proMMP3 activities in gastric tissues as compared to SS1/SS1 and SS1/AM1 infected groups. The expression of both MMP9 and MMP3 followed similar trend like activity in infected tissues. Both Th1 and Th17 responses were induced by SS1 strain more profoundly than AM1 strain infection which induced solely Th1 response in spleen and gastric tissues. Moreover, IFN-γ, TNF-α, IL-1β and IL-12 were significantly downregulated in mice spleen and gastric tissues infected by AM1/SS1 compared to SS1/SS1 but not with SS1/AM1 coinfection. Surprisingly, IL-17 level was dampened significantly in AM1/ SS1 compared to SS1/AM1 coinfected groups. Furthermore, number of Foxp3+ T-regulatory (Treg) cells and immunosuppressive cytokines like IL-10 and TGF-β were reduced in AM1/SS1 compared to SS1/SS1 and SS1/AM1 coinfected mice gastric tissues. Conclusions: These data suggested that prior H. pylori cag− strain infection attenuated the severity of gastric pathology induced by subsequent cag+ strain in C57BL/6 mice. Prior AM1 infection induced Th1 cytokine IFN-γ, which reduced the Th17 response induced by subsequent SS1 infection. The reduced gastritis in AM1/SS1-infected mice might also be due to enrichment of AM1- primed Treg cells in the gastric compartment which inhibit Th1 and Th17 responses to subsequent SS1 infection. In summary, prior infection by non-virulent H. pylori strain (AM1) causes reduction of subsequent virulent strain (SS1) infection by regulation of inflammatory cytokines and MMPs expressio
    corecore