26 research outputs found

    DigitalPinDirector: A digital pinscreen editor for images and realtime animation in low cost personal computers

    Get PDF
    This paper presents the main characteristics of the traditional Pinscreen, the way it works, its problems and results achieved. The first Digital Pinscreen system is presented, along with its main characteristics and limitations. The rest of the paper describes and presents the DigitalPinDirector: a system that enables a full and true creative access to the unique visual and animation characteristics of the Pinscreen.info:eu-repo/semantics/publishedVersio

    Study of Viscoelastic Effect on the Frequency Shift of Microcantilever Chemical Sensors (proceedings)

    Get PDF
    Microcantilevers coated with a chemically sensitive layer are increasingly being used in chemical detection systems. The sensitive coating, often a polymer, absorbs specific molecules, which can be detected by monitoring the shift in the mechanical resonant frequency. Usually, the frequency shift resulting from molecular absorption is interpreted as a mass loading effect. However, mass loading is not the only effect that has an impact on the frequency shift; the viscoelastic properties of the sensitive coating are also affected by the sorption process. Sorption-induced modulus changes are typically difficult to characterize. However, it is known that the sorption of analyte molecules in a polymer coating results in the plasticization of the coating. In most cases, the polymer becomes more rubbery with increasing concentration of analyte molecules, i.e., the coating becomes softer with increasing loss modulus while the storage modulus decreases. Using a new analytical model developed for the resonant frequency expression of a hybrid microcantilever (elastic base and viscoelastic layer), the effects of the modification of the storage and loss moduli of the sensitive layer on the resonant frequency are examined. The main conclusion of this analytical study is that, even if the sensitive coating moduli are small compared to the base cantilever\u27s Young\u27s modulus, the effect of the change in the viscoelastic coating properties could contribute significantly to the overall frequency shift (8-23% in the simulations depending on the coating thickness, with even higher contributions for other sets of problem parameters)

    Effect of Viscoelasticity on Quality Factor of Microcantilever Chemical Sensors: Optimal Coating Thickness for Minimum Limit of Detection

    Get PDF
    Microcantilevers with polymer coatings hold great promise as resonant chemical sensors. It is known that the coated cantilever sensitivity increases with coating thickness; however, the drawback of increasing the coating thickness is the increase of the frequency noise and thus the deterioration of the sensor\u27s limit of detection. In this paper, an analytical expression for the viscoelastic losses in the coating, hence the quality factor is established and is used to explain the observed increase of the frequency noise with the polymer thickness. This result is then used to demonstrate that an optimum coating thickness exists that minimise the limit of detectio

    Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement

    Get PDF
    We measure the mechanical thermal noise of soft silicon atomic force microscopy cantilevers. Using an interferometric setup, we have a resolution down to 1E-14 m/rtHz on a wide spectral range (3 Hz to 1E5 Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectrums for uncoated cantilevers versus 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model

    A phase I clinical and pharmacokinetic study of capecitabine (Xeloda®) and irinotecan combination therapy (XELIRI) in patients with metastatic gastrointestinal tumours

    Get PDF
    Capecitabine is a highly active oral fluoropyrimidine that is an attractive alternative to 5-fluorouracil in colorectal cancer treatment. The current study, undertaken in 27 patients with gastrointestinal tumours, aimed to assess the toxicity and potential for significant pharmacokinetic interactions of a combination regimen incorporating capecitabine with 3-weekly irinotecan (XELIRI). Irinotecan (200 and 250 mg m−2) was administered as a 90-min infusion on day 1 in combination with escalating capecitabine doses (700–1250 mg m−2 twice daily) administered on days 2–15 of a 3-week treatment cycle. Pharmacokinetics were characterised on days 1 and 2 of the first two cycles. A total of 103 treatment cycles were administered. The principal dose-limiting toxicities were diarrhoea and neutropenia. Capecitabine 1150 mg m−2 twice daily with irinotecan 250 mg m−2 was identified as the maximum-tolerated dose and capecitabine 1000 mg m−2 with irinotecan 250 mg m−2 was identified as the recommended dose for further study. Analyses confirmed that there were no significant pharmacokinetic interactions between the two agents. The combination was clinically active, with complete and partial responses achieved in heavily pretreated patients. This study indicates that XELIRI is a potentially feasible and clinically active regimen in patients with advanced gastrointestinal cancer

    Computation of steam-water transients using a two-fluid seven-equation model

    No full text
    International audienceThis paper is dedicated to the comparison between experimental data and numerical results in multi-phase flows involving high pressure ratios such as water hammer transients. A two-fluid seven equation model has been selected due to its ability to take into account all phasic desequilibria as well as vanishing phases. Theoretical properties of the model are underlined. A mono-dimensional finite volume implementation of the two-fluid model is then compared to the experimental data of the Simpson and Canon experiment. Differences with the classical Baer and Nunziato model are also pointedout

    A methodological study of the influence of soil variability on pesticide transfer

    No full text
    International audienc

    From the Reference SEU Monitor to the Technology Demonstration Module On-Board PROBA-II

    No full text
    The reference SEU Monitor system designed and presented in 2005 (R. H. Sorensen, F.-X. Guerre, and A. Roseng "Design, testing and calibration of a reference SEU monitor system," in Proc. RADECS, 2005, pp. B3-1-B3-7) has now been used by many researchers at many radiation test sites and has provided valuable calibration data in support of numerous projects. As some of these findings and results give new insight into improved inter-facility calibrations and provide additional inputs into ongoing SEE research, a few of the more interesting cases are presented. Furthermore the 'detector element', the Atmel AT60142F SRAM, now in a hybrid configuration, will form the key detector element in the Technology Demonstration Module (TDM) to be flown on-board the PROBA-II satellite, to be launched at the beginning of 2009. This flight opportunity extends the Reference SEU Database with both ground and space data, taken on the same device under identical operating conditions. Additionally, the Reference SEU Monitor concept is employed as the basis for the new Reference SEL Monitor system, currently under characterization and preparation for integration on the TDM. Ground SEU/SEL characterization of this latch-up experiment is also presented as well as the basic concept of the TDM, the PROBA-II Radiation Monitor module

    Dexamethasone as an in vivo

    No full text
    corecore