724 research outputs found

    Modeling the power flow in normal conductor-insulator-superconductor junctions

    Get PDF
    Normal conductor-insulator-superconductor (NIS) junctions promise to be interesting for x-ray and phonon sensing applications, in particular due to the expected self-cooling of the N electrode by the tunneling current. Such cooling would enable the operation of the active element of the sensor below the cryostat temperature and at a correspondingly higher sensitivity. It would also allow the use of MS junctions as microcoolers. At present, this cooling has not been realized in large area junctions (suitable for a number of detector applications). In this article, we discuss a detailed modeling of the heat flow in such junctions; we show how the heat flow into the normal electrode by quasiparticle back-tunneling and phonon absorption from quasiparticle pair recombination can overcompensate the cooling power. This provides a microscopic explanation of the self-heating effects we observe in our large area NIS junctions. The model suggests a number of possible solutions

    Statistical analysis of the ion flux to the JET outer wall

    Get PDF
    Statistical analysis of the ion flux to the JET outer-wall is conducted in outer-wall limiter mounted Langmuir probe (OLP) time-series across a wide range of plasma current and line-averaged density during Ohmically heated horizontal target L-mode plasmas. The mean, μ, and the standard deviation, σ, of the ion-saturation current measured by the OLP show systematic variation with plasma current and density. Both increase as either plasma current decreases and/or density increases. Upon renormalization, achieved by subtraction of μ and rescaling by σ, the probability distribution functions (PDFs) of each signal collapse approximately onto a single curve. The shape of the curve deviates from a Γ distribution in the tail of the PDF and is better described by a log-normal distribution. The invariance in the shape of the PDF, which occurs over approximately four decades of the ordinate, is shown to be the result of a balance between the duration time of the average burst wave-form, τd and the waiting time between bursts, τw. This implies that the intermittency parameter, τd/τw , can be considered constant at the JET outer wall during horizontal target Ohmic L-mode operation. This result may be important both for model validation and prediction

    Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall

    Get PDF
    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER

    MAST Upgrade Divertor Facility : A Test Bed for Novel Divertor Solutions

    Get PDF
    The challenge of integrated exhaust consistent with the other requirements in DEMO and power plant class tokamaks (ITER-like and alternative DEMOs, Fusion Nuclear Science Facility approaches) is well-known and the exhaust solution is likely to be fundamental to the design and operating scenarios chosen. Strategies have been proposed such as high main plasma radiation, but improved solutions are sought and will require revised research methodologies. While no facility can address all the challenges, the new MAST Upgrade tokamak enables exploration of a wide range of divertor plasma aspects in a single device and their relation with the core plasma (e.g., access to H-mode) and in particular the development of fundamental understanding and new ideas. It has a unique combination of closed divertor, capability of a wide range of configurations from conventional to long leg (including Super-X), and fully symmetric double null (plasma and divertor structures). To extrapolate to DEMO and power plant scale devices where full integrated tests in advance are not feasible yet different physics mechanisms may dominate, theory-based models are likely to be essential for confident performance prediction, optimization, and a ``qualification' of the concept. Development and validation of such models is at the heart of the program around MAST Upgrade. Amongst the many areas to be explored, there will be a strong focus on the closely coupled topics of plasma detachment and cross-field transport mechanisms (e.g., plasma filaments), key ingredients of effective and reliable protection of the plasma-facing components at DEMO scale
    • …
    corecore