49 research outputs found

    Frequency and phenotypic spectrum of KMT2B dystonia in childhood: A single‐center cohort study

    Get PDF
    Background: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants have been recognized as an important cause of childhood-onset dystonia. Objective: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged less than 18 years at onset, the associated clinical and radiological phenotype, and the natural history of disease. Methods: Whole-exome sequencing or customized gene panels were used to screen a cohort of sixty-five patients who had previously tested negative for all other known dystonia-associated genes. Results: We identified fourteen patients (21.5%) carrying KMT2B variants, of which one was classified as a Variant of Unknown Significance (VUS). We also identified two additional patients carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later caudo-cranial generalization. Eight patients underwent pallidal Deep Brain Stimulation with a median decrease of BFMDRS-M score of 38.5% in the long term. We also report four asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete disease penetrance. Conclusions: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex neurodevelopmental syndrome often featuring growth retardation and intellectual disability as additional phenotypic features. A dramatic and long-lasting response to Deep Brain Stimulation is characteristic of DYT-KMT2B dystonia

    MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia

    Get PDF
    The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021Peer reviewe

    Treatment of experimental sporotrichosis in mice

    No full text
    corecore