12,503 research outputs found

    A new empirical method to infer the starburst history of the Universe from local galaxy properties

    Get PDF
    The centres of ellipticals and bulges are formed dissipationally, via gas inflows over short time-scales – the ‘starburst’ mode of star formation. Recent work has shown that the surface brightness profiles, kinematics and stellar populations of spheroids can be used to separate the dissipational component from the dissipationless ‘envelope’ made up of stars formed over more extended histories in separate objects, and violently assembled in mergers. Given high-resolution, detailed observations of these ‘burst relic’ components of ellipticals (specifically their stellar mass surface density profiles), together with the simple assumptions that some form of the Kennicutt–Schmidt law holds and that the burst was indeed a dissipational, gas-rich event, we show that it is possible to invert the observed profiles and obtain the time- and space-dependent star formation history of each burst. We perform this exercise using a large sample of well-studied spheroids, which have also been used to calibrate estimates of the ‘burst relic’ populations. We show that the implied bursts scale in magnitude, mass and peak star formation rate (SFR) with galaxy mass in a simple manner, and provide fits for these correlations. The typical burst mass M_(burst) is ∼ 10 per cent of the total spheroid mass, the characteristic starburst time-scale implied is a nearly galaxy-mass-independent t_(burst) ∼ 10⁸ yr, the peak SFR of the burst is ∼M_(burst)/t_(burst) and bursts decay subsequently in power-law fashion as Ṁ_★ ∝ t^(-2.4). As a function of time, we obtain the spatial size of the starburst; burst sizes at peak activity scale with burst mass in a manner similar to the observed spheroid size–mass relation, but are smaller than the full galaxy size by a factor of ∼10; the size grows in time as the central, most dense regions are more quickly depleted by star formation as R_(burst) ∝ t^(0.5). Combined with observational measurements of the nuclear stellar population ages of these systems – i.e. the distribution of times when these bursts occurred – it is possible to re-construct the dissipational burst contribution to the distribution of SFRs and infrared (IR) luminosity functions (LFs) and luminosity density of the Universe. We do so and show that these burst LFs agree well with the observed IR LFs at the brightest luminosities, at redshifts z∼ 0–2. At low luminosities, however, bursts are always unimportant; the transition luminosity between these regimes increases with redshift from the ultraluminous infrared galaxy threshold at z∼ 0 to hyper-luminous infrared galaxy thresholds at z∼ 2. At the highest redshifts z≳ 2, we can set strict upper limits on starburst magnitudes, based on the maximum stellar mass remaining at high densities at z= 0, and find tension between these and estimated number counts of sub-millimetre galaxies, implying that some change in bolometric corrections, the number counts themselves or the stellar initial mass function may be necessary. At all redshifts, bursts are a small fraction of the total SFR or luminosity density, ∼5–10 per cent, in good agreement with estimates of the contribution of merger-induced star formation

    Uncertainty Relations for Angular Momentum

    Get PDF
    In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the "uncertainty regions'' given by all vectors, whose components are specified by the variances of the three angular momentum components. A basic feature of this set is a lower bound for the sum of the three variances. We give a method for obtaining optimal lower bounds for uncertainty regions for general operator triples, and evaluate these for small s. Further lower bounds are derived by generalizing the technique by which Robertson obtained his state-dependent lower bound. These are optimal for large s, since they are saturated by states taken from the Holstein-Primakoff approximation. We show that, for all s, all variances are consistent with the so-called vector model, i.e., they can also be realized by a classical probability measure on a sphere of radius sqrt(s(s+1)). Entropic uncertainty relations can be discussed similarly, but are minimized by different states than those minimizing the variances for small s. For large s the Maassen-Uffink bound becomes sharp and we explicitly describe the extremalizing states. Measurement uncertainty, as recently discussed by Busch, Lahti and Werner for position and momentum, is introduced and a generalized observable (POVM) which minimizes the worst case measurement uncertainty of all angular momentum components is explicitly determined, along with the minimal uncertainty. The output vectors for the optimal measurement all have the same length r(s), where r(s)/s goes to 1 as s tends to infinity.Comment: 30 pages, 22 figures, 1 cut-out paper model, video abstract available on https://youtu.be/h01pHekcwF

    Taxing Human Capital Efficiently when Qualified Labour is Mobile

    Get PDF
    The paper studies the effect that skilled labour mobility has on efficient education policy. The model is one of two periods in which a representative taxpayer decides on labour, education, and saving. The government can only use linear tax and subsidy instruments. It is shown that the mobility of skilled labour well constrains government’s choice of policy instruments. The mobility does not however affect second best education policy in allocational terms. In particular, education should be effectively subsidized if, and only if, the elasticity of the earnings function is increasing in education. This rule applies regardless of whether labour is mobile or immobile.mobile labour, second-best efficient taxation, linear instruments, residence vs. source principle

    Hydrodynamic Thermonuclear Runaways in Superbursts

    Get PDF
    We calculate the thermal and dynamical evolution of the surface layers of an accreting neutron star during the rise of a superburst. For the first few hours following unstable 12C ignition, the nuclear energy release is transported by convection. However, as the base temperature rises, the heating time becomes shorter than the eddy turnover time and convection becomes inefficient. This results in a hydrodynamic nuclear runaway, in which the heating time becomes shorter than the local dynamical time. Such hydrodynamic burning can drive shock waves into the surrounding layers and may be the trigger for the normal X-ray burst found to immediately precede the onset of the superburst in both cases where the Rossi X-Ray Timing Explorer was observing.Comment: 4 pages, 3 figures (emulateapj), accepted to ApJ Letter

    Are most low-luminosity active galactic nuclei really obscured?

    Get PDF
    At low Eddington ratios (ṁ), two effects make it more difficult to detect certain active galactic nuclei (AGN) given a particular set of selection methods. First, even allowing for fixed accretion physics, at low ṁ AGN become less luminous relative to their hosts, diluting their emission; the magnitude of the dilution depends on host properties and, therefore, on luminosity and redshift. Secondly, low-forumla systems are expected and observed to transition to a radiatively inefficient state, which changes the spectral energy distribution (SED) shape and dramatically decreases the luminosity at optical through infrared (IR) wavelengths. The effects of dilution are unavoidable, while the precise changes in accretion physics at low ṁ are somewhat uncertain, but potentially very important for our understanding of AGN. These effects will have different implications for samples with different selection criteria, and generically lead to differences in the AGN populations recovered in observed samples, even at fixed bolometric luminosity and after correction for obscuration. Although the true Eddington ratio distribution may depend strongly on mass/luminosity, this will be seen only in surveys robust to dilution and radiative inefficiency, such as X-ray or narrow-line samples; by contrast, selection effects imply that AGN in optical samples will have uniformly high Eddington ratios, with little dependence on luminosity, even at low L_(bol) where the median ‘true’ ṁ ≲ 0.01. These same selection effects also imply that different selection criteria pick out systems with different hosts: as a result, the clustering of low-luminosity optical/IR sources will be weaker than that of X-ray sources, and optical/IR Seyferts will reside in more disc-dominated galaxies, while X-ray-selected Seyferts will be preferentially in early-type systems. Taken together, these effects can naturally explain longstanding, apparently contradictory claims in the literature regarding AGN Eddington ratio distributions, host populations and clustering. Finally, we show that if current observed Eddington ratio distributions are correct, a large fraction of low-luminosity AGN currently classified as ‘obscured’ are in fact radiatively diluted and/or radiatively inefficient, not obscured by gas or dust. This is equally true if X-ray hardness is used as a proxy for obscuration, since radiatively inefficient SEDs near ṁ ~ 0.01 are characteristically X-ray hard. These effects can explain most of the claimed luminosity/redshift dependence in the ‘obscured’ AGN population, with the true obscured fraction as low as ∼20 per cent

    Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast

    Get PDF
    Water is involved in all aspects of biological activity, both as a solvent and as a reactant. It is hypothesized that intracellular water is in a highly structured state due to the high concentrations of macromolecules in the cell and that this may change the activity of intracellular enzymes due to altered binding affinities and allosteric regulations. Here we first investigate the kinetics of two glycolytic enzymes in artificially crowded aqueous solutions and show that crowding does indeed change their kinetics. Based on our kinetic measurements we propose a new model of oscillating glycolysis that instead of Michaelis-Menten or Monod-Wyman-Changeux kinetics uses the Yang-Ling adsorption isotherm introduced by G. Ling in the frame of the Association-Induction (AI) hypothesis. Using this model, we can reproduce previous experimental observations of the coupling of glycolytic oscillations and intracellular water dynamics, e.g., (i) during the metabolic oscillations, the latter variable oscillates in phase with ATP activity, and (ii) the emergence of glycolytic oscillations largely depends on the extent of intracellular water dipolar relaxation in cells in the resting state. Our results support the view that the extent of intracellular water dipolar relaxation is regulated by the ability of cytoplasmic proteins to polarize intracellular water with the assistance of ATP, as suggested in the AI hypothesis. This hypothesis may be relevant to the interpretation of many other biological oscillators, including cell signalling processes.Fil: Thoke, Henrik S.. University Of Southern Denmark; DinamarcaFil: Bagatolli, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Olsen, Lars F.. University Of Southern Denmark; Dinamarc

    Mode stability on the real axis

    Full text link
    A generalization of the mode stability result of Whiting (1989) for the Teukolsky equation is proved for the case of real frequencies. The main result of the paper states that a separated solution of the Teukolsky equation governing massless test fields on the Kerr spacetime, which is purely outgoing at infinity, and purely ingoing at the horizon, must vanish. This has the consequence, that for real frequencies, there are linearly independent fundamental solutions of the radial Teukolsky equation which are purely ingoing at the horizon, and purely outgoing at infinity, respectively. This fact yields a representation formula for solutions of the inhomogenous Teukolsky equation.Comment: 20 pages, 4 figures. Reference added, revtex4-1 forma

    Disparity among low first ionization potential elements

    Full text link
    The elemental composition of the solar wind differs from the solar photospheric composition. Elements with low first ionization potential (FIP) appear enhanced compared to O in the solar wind relative to the respective photospheric abundances. This so-called FIP effect is different in the slow solar wind and the coronal hole wind. However, under the same plasma conditions, for elements with similar FIPs such as Mg, Si, and Fe, comparable enhancements are expected. We scrutinize the assumption that the FIP effect is always similar for different low FIP elements, namely Mg, Si, and Fe. We investigate the dependency of the FIP effect of low FIP elements on the O7+/O6+ charge state ratio depending on time and solar wind type. We order the observed FIP ratios with respect to the O7+/O6+ charge state ratio into bins and analyze separately the respective distributions of the FIP ratio of Mg, Si, and Fe for each O7+/O6+ charge state ratio bin. We observe that the FIP effect shows the same qualitative yearly behavior for Mg and Si, while Fe shows significant differences during the solar activity maximum and its declining phase. In each year, the FIP effect for Mg and Si always increases with increasing O7+/O6+ charge state ratio, but for high O7+/O6+ charge state ratios the FIP effect for Fe shows a qualitatively different behavior. During the years 2001-2006, instead of increasing with the O7+/O6+ charge state ratio, the Fe FIP ratio exhibits a broad peak. Also, the FIP distribution per O7+/O6+ charge state bin is significantly broader for Fe than for Mg and Si. These observations support the conclusion that the elemental fractionation is only partly determined by FIP. In particular, the qualitative difference behavior with increasing O7+/O6+ charge state ratio between Fe on the one hand and Mg and Si on the other hand is not yet well explained by models of fractionation
    corecore