114 research outputs found

    A nonlinear model for a turbo compressor using fuzzy logic approach

    Get PDF
    During the last decade, significant change of direction in the development of control theory and its application has attracted great attention from the academic and industrial communities. The concept of "Intelligent Control "has been suggested as an alternative approach to conventional control techniques for complex control systems. The objective is to introduce new mechanisms permitting a more flexible control, but especially more robust one, able to deal with model uncertainties and parameter variations. In this work, we examine and illustrate the use of fuzzy logic in modelling and control design of a turbo compressor system. Turbo compressor systems are crucial part of most chemical and petrochemical plants. It's a system being very complex by its physical structure as well as its behaviour (surge problem .) The turbo compressor is considered as a complex system where many modelling and controlling efforts have been made. In the regard to the complexity and the strong non linearity of the turbo compressor dynamics, and the attempt to find a model structure which can capture in some appropriate sense the key of the dynamical properties of the physical plant, we propose to study the application possibilities of the recent control approaches and evaluate their contribution in the practical and theoretical fields consequently. Facing to the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these technique constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, ...) offering suitable tools to characterise them. In the particular case of the turbo compressor, these imperfections are interpreted by modelling errors, the neglected dynamics and the parametric variations . Fuzzy logic intervene efficiently in the compressor modelling. The fuzzy logic model suggested in this work reproduced well the main characteristics of the turbo compressor dynamic model developed by Gretzer and Moore and give place to a more precise and easy to handle representation. It is about a inaccuracies reproducing with a certain degree of satisfaction of the real process without being as much comple

    High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    Get PDF
    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used

    Disinfection of Ocular Cells and Tissues by Atmospheric-Pressure Cold Plasma

    Get PDF
    Background: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology and Principal Findings: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2) was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses

    Application of an electronic tongue for Tunisian olive oils' classification according to olive cultivar or physicochemical parameters

    Get PDF
    Olive oil commercialization has a great impact on the economy of several countries, namely Tunisia, being prone to frauds. Therefore, it is important to establish analytical techniques to ensure labeling correctness concerning olive oil quality and olive cultivar. Traditional analytical techniques are quite expensive, time consuming and hardly applied in situ, considering the harsh environments of the olive industry. In this work, the feasibility of applying a potentiometric electronic tongue with cross-sensitivity lipid membranes to discriminate Tunisian olive oils according to their quality level (i.e., extra virgin, virgin or lampante olive oils) or autochthonous olive cultivar (i.e., cv Chétoui and cv Shali) was evaluated for the first time. Linear discrimination analysis coupled with the simulated annealing variable selection algorithm showed that the signal profiles of olive oils hydroethanolic extracts allowed olive oils discrimination according to physicochemical quality level (classification model based on 25 signals enabling 84 ± 9% correct classifications for repeated K-fold cross-validation), and olive cultivar (classification model based on 20 signals with an average sensitivity of 94 ± 6% for repeated K-fold cross-validation), regardless of the geographical origin and olive variety or the olive quality, respectively. The results confirmed, for the first time, the potential discrimination of the electronic tongue, attributed to the observed quantitative response (sensitivities ranging from 66.6 to +57.7 mV/decade) of the E-tongue multi-sensors towards standard solutions of polar compounds (aldehydes, esters and alcohols) usually found in olive oils and that are related to their sensory positive attributes like green and fruity.This work was financially supported by Project POCI-01–0145-FEDER-006984–Associate Laboratory LSRE-LCM and by Project UID/QUI/00616/2013–CQ-VR both funded by FEDER—Fundo Europeu de Desenvolvimento Regional through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCTFundação para a Ciência e a Tecnologia, Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/ BD/104038/2014).info:eu-repo/semantics/publishedVersio

    Fuzzy logic approach applied to the surge detection and isolation in centrifugal compressor

    No full text
    The gas compressor plants are bodies sensitive to accidental defects, the consequences of these defects on good operation of the gas pipeline can be critical. This paper presents an application of the fuzzy approach in fault detection and isolation of surge in this compression system. This paper illustrates an alternative implementation to the compression systems supervision task using the basic principles of model based fault detection and isolation associated with fuzzy modelling approach. Application results of a fault detection and isolation for a compression system are provided, which illustrate the relevance of the proposed fuzzy fault detection and isolation method. This work is con sidered a first step in accessing the factors that affect the success or limitations of surge detection and isolation in natural gas pipeline compressor

    Choix des langues et representations des jeunes a Mayotte:Une approche quantitative

    No full text
    corecore