204,805 research outputs found

    Optical conductivity of one-dimensional narrow-gap semiconductors

    Full text link
    The optical conductivities of two one-dimensional narrow-gap semiconductors, anticrossing quantum Hall edge states and carbon nanotubes, are studied using bosonization method. A lowest order renormalization group analysis indicates that the bare band gap can be treated perturbatively at high frequency/temperature. At very low energy scale the optical conductivity is dominated by the excitonic contribution, while at temperature higher than a crossover temperature the excitonic features are eliminated by thermal fluctuations. In case of carbon nanotubes the crossover temperature scale is estimated to be 300 K.Comment: RevTeX4 file, 6 pages, no figur

    Muon Detection of TeV Gamma Rays from Gamma Ray Bursts

    Get PDF
    Because of the limited size of the satellite-borne instruments, it has not been possible to observe the flux of gamma ray bursts (GRB) beyond GeV energy. We here show that it is possible to detect the GRB radiation of TeV energy and above, by detecting the muon secondaries produced when the gamma rays shower in the Earth's atmosphere. Observation is made possible by the recent commissioning of underground detectors (AMANDA, the Lake Baikal detector and MILAGRO) which combine a low muon threshold of a few hundred GeV or less, with a large effective area of 10^3 m^2 or more. Observations will not only provide new insights in the origin and characteristics of GRB, they also provide quantitative information on the diffuse infrared background.Comment: Revtex, 12 pages, 3 postscript figures, uses epsfig.st

    Shuttle system ascent aerodynamic and plume heating

    Get PDF
    The shuttle program provided a challenge to the aerothermodynamicist due to the complexity of the flow field around the vehicle during ascent, since the configuration causes multiple shock interactions between the elements. Wind tunnel tests provided data for the prediction of the ascent design heating environment which involves both plume and aerodynamic heating phenomena. The approach for the heating methodology based on ground test firings and the use of the wind tunnel data to formulate the math models is discussed

    Scaling of Reaction Zones in the A+B->0 Diffusion-Limited Reaction

    Full text link
    We study reaction zones in three different versions of the A+B->0 system. For a steady state formed by opposing currents of A and B particles we derive scaling behavior via renormalization group analysis. By use of a previously developed analogy, these results are extended to the time-dependent case of an initially segregated system. We also consider an initially mixed system, which forms reaction zones for dimension d<4. In this case an extension of the steady-state analogy gives scaling results characterized by new exponents.Comment: 4 pages, REVTeX 3.0 with epsf, 2 uuencoded postscript figures appended, OUTP-94-33

    Multiple Thresholds in a Model System of Noisy Ion Channels

    Full text link
    Voltage-activated ion channels vary randomly between open and closed states, influenced by the membrane potential and other factors. Signal transduction is enhanced by noise in a simple ion channel model. The enhancement occurs in a finite range of signals; the range can be extended using populations of channels. The range increases more rapidly in multiple-threshold channel populations than in single-threshold populations. The diversity of ion channels may thus be present as a strategy to reduce the metabolic costs of handling a broad class of electrochemical signals.Comment: REVTeX 4, 5 pages, 4 figures; added paragrap

    Extended BRST invariance in topological Yang Mills theory revisited

    Get PDF
    Extended BRST invariance (BRST plus anti-BRST invariances) provides in principle a natural way of introducing the complete gauge fixing structure associated to a gauge field theory in the minimum representation of the algebra. However, as it happens in topological Yang Mills theory, not all gauge fixings can be obtained from a symmetrical extended BRST algebra, where antighosts belong to the same representation of the Lorentz group of the corresponding ghosts. We show here that, at non interacting level, a simple field redefinition makes it possible to start with an extended BRST algebra with symmetric ghost antighost spectrum and arrive at the gauge fixing action of topological Yang Mills theory.Comment: Interaction terms heve been included in all the calculations. Two references added. Version to be published in Phys. Rev. D. 7 pages, Latex, no figure

    Particle-in-cell and weak turbulence simulations of plasma emission

    Full text link
    The plasma emission process, which is the mechanism for solar type II and type III radio bursts phenomena, is studied by means of particle-in-cell and weak turbulence simulation methods. By plasma emission, it is meant as a loose description of a series of processes, starting from the solar flare associated electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent partial conversion of beam energy into the radiation energy by nonlinear processes. Particle-in-cell (PIC) simulation is rigorous but the method is computationally intense, and it is difficult to diagnose the results. Numerical solution of equations of weak turbulence (WT) theory, termed WT simulation, on the other hand, is efficient and naturally lends itself to diagnostics since various terms in the equation can be turned on or off. Nevertheless, WT theory is based upon a number of assumptions. It is, therefore, desirable to compare the two methods, which is carried out for the first time in the present paper with numerical solutions of the complete set of equations of the WT theory and with two-dimensional electromagnetic PIC simulation. Upon making quantitative comparisons it is found that WT theory is largely valid, although some discrepancies are also found. The present study also indicates that it requires large computational resources in order to accurately simulate the radiation emission processes, especially for low electron beam speeds. Findings from the present paper thus imply that both methods may be useful for the study of solar radio emissions as they are complementary.Comment: 21 pages, 9 figure

    Theory for Gossamer and Resonating Valence Bond Superconductivity

    Get PDF
    We use an effective Hamiltonian for two-dimensional Hubbard model including an antiferromagnetic spin-spin coupling term to study recently proposed gossamer superconductivity. We formulate a renormalized mean field theory to approximately take into account the strong correlation effect in the partially projected Gutzwiller wavefucntions. At the half filled, there is a first order phase transition to separate a Mott insulator at large Coulomb repulsion U from a gossamer superconductor at small U. Away from the half filled,the Mott insulator is evolved into an resonating valence bond state, which is adiabatically connected to the gossamer superconductor.Comment: 10 pages, 13 figure
    corecore