34 research outputs found

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Event-related potential studies of post-traumatic stress disorder: a critical review and synthesis

    Get PDF
    Despite the sparseness of the currently available data, there is accumulating evidence of information processing impairment in post-traumatic stress disorder (PTSD). Studies of event-related potentials (ERPs) are the main tool in real time examination of information processing. In this paper, we sought to critically review the ERP evidence of information processing abnormalities in patients with PTSD. We also examined the evidence supporting the existence of a relationship between ERP abnormalities and symptom profiles or severity in PTSD patients. An extensive Medline search was performed. Keywords included PTSD or post-traumatic stress disorder, electrophysiology or EEG, electrophysiology, P50, P100, N100, P2, P200, P3, P300, sensory gating, CNV (contingent negative variation) and MMN (mismatch negativity). We limited the review to ERP adult human studies with control groups which were reported in the English language. After applying our inclusion-exclusion review criteria, 36 studies were included. Subjects exposed to wide ranges of military and civilian traumas were studied in these reports. Presented stimuli were both auditory and visual. The most widely studied components included P300, P50 gating, N100 and P200. Most of the studies reported increased P300 response to trauma-related stimuli in PTSD patients. A smaller group of studies reported dampening of responses or no change in responses to trauma-related and/or unrelated stimuli. P50 studies were strongly suggestive of impaired gating in patients with PTSD. In conclusion, the majority of reports support evidence of information processing abnormalities in patients with PTSD diagnosis. The predominance of evidence suggests presence of mid-latency and late ERP components differences in PTSD patients in comparison to healthy controls. Heterogeneity of assessment methods used contributes to difficulties in reaching firm conclusions regarding the nature of these differences. We suggest that future ERP-PTSD studies utilize standardized assessment scales that provide detailed information regarding the symptom clusters and the degree of symptom severity. This would allow assessment of electrophysiological indices-clinical symptoms relationships. Based on the available data, we suggest that ERP abnormalities in PTSD are possibly affected by the level of illness severity. If supported by future research, ERP studies may be used for both initial assessment and treatment follow-up

    ATLASGAL-selected massive clumps in the inner Galaxy III. Dust Continuum Characterization of an Evolutionary Sample

    Get PDF
    Context: Massive-star formation and the processes involved are still poorly understood. The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive-star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected by their infrared and radio properties to be representative for the whole range of evolutionary stages. Aims: The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. Methods: We determine flux densities from mid-infrared to submillimeter wavelength (8–870 μm) images and use these values to fit their spectral energy distributions and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. Results: We define four distinct source classes from the available continuum data and arrange these into an evolutionary sequence. This begins with sources found to be dark at 70 μm, followed by 24 μm weak sources with an embedded 70 μm source, continues through mid-infrared bright sources and ends with infrared bright sources associated with radio emission (i.e., H ii regions). We find trends for increasing temperature, luminosity, and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. Our sources span temperatures from approximately 11 to 41 K, with bolometric luminosities in the range 57 L⊙−3.8 × 106L⊙. The highest masses reach 4.3 × 104M⊙ and peak column densities up to 1.1 × 1024 cm-1, and therefore have the potential to form the most massive O-type stars. We show that at least 93 sources (85%) of this sample have the ability to form massive stars and that most are gravitationally unstable and hence likely to be collapsing. Conclusions: The highest column density ATLASGAL sources cover the whole range of evolutionary stages from the youngest to the most evolved high-mass-star forming clumps. Study of these clumps provides a unique starting point for more in-depth research on massive-star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution

    Liquified chitosan-alginate multilayer capsules incorporating poly(L-lactic acid) microparticles as cell carriers

    Get PDF
    We report the development of liquified multilayer hierarchical capsules capable of providing cell adhesion sites to the encapsulated cells. The proof of principle is demonstrated with the example of a chitosan–alginate shell via layer-by-layer assembly, encapsulating cells adhered to the functionalized surface of poly(L-lactic acid) microparticles
    corecore