125 research outputs found

    Self-localization of magnon Bose-Einstein condensates in the ground state and on excited levels: from harmonic to box-like trapping potential

    Full text link
    Long-lived coherent spin precession of 3He-B at low temperatures around 0.2 Tc is a manifestation of Bose-Einstein condensation of spin-wave excitations or magnons in a magnetic trap which is formed by the order-parameter texture and can be manipulated experimentally. When the number of magnons increases, the orbital texture reorients under the influence of the spin-orbit interaction and the profile of the trap gradually changes from harmonic to a square well, with walls almost impenetrable to magnons. This is the first experimental example of Bose condensation in a box. By selective rf pumping the trap can be populated with a ground-state condensate or one at any of the excited energy levels. In the latter case the ground state is simultaneously populated by relaxation from the exited level, forming a system of two coexisting condensates.Comment: 4 pages, 5 figure

    MACHe3: A new generation detector for non-baryonic dark matter direct detection

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter (DM) search, using superfluid as a sensitive medium. An experiment on a prototype cell has been performed and the first results reported here are encouraging to develop of a multicell prototype. In order to investigate the discovery potential of MACHe3, and its complementarity with other DM detectors, a phenomenological study done with the DarkSUSY code is shown.Comment: 6 pages, 3 figures, Proceedings of the 4th International Workshop on the Identification of Dark Matter (York, UK, 09/02/2002-09/06/2002

    Propagation of thermal excitations in a cluster of vortices in superfluid 3He-B

    Full text link
    We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator in equilibrium rotation at constant angular velocity is measured with two quartz tuning fork oscillators. One oscillator creates a controllable density of excitations at 0.2Tc base temperature and the other records the thermal response. The results are compared to numerical calculations of ballistic propagation of thermal quasiparticles through a cluster of rectilinear vortices.Comment: 6 pages, 4 figure

    Geographical distribution of hepatitis C virus genotypes in blood donors:an international collaborative survey

    Get PDF
    The frequency of infection with the six classified major genotypes of hepatitis C virus (HCV) was investigated in 447 infected volunteer blood donors from the following nine countries: Scotland, Finland, The Netherlands, Hungary, Australia, Egypt, Japan, Hong Kong, and Taiwan. Viral sequences in plasma from blood donors infected with HCV were amplified in the 5'-noncoding region and were typed by restriction fragment length polymorphism analysis. Electrophoresis of DNA fragments produced by cleavage with HaeIII-RsaI and ScrFI-HinfI allowed HCV types 1 (or 5), 2, 3, 4, and 6 to be identified. Further analysis with MvaI-HinfI allowed sequences of the type 5 genotype to be distinguished from sequences of type 1 genotype. Types 1, 2, and 3 accounted for almost all infections in donors from Scotland, Finland, The Netherlands, and Australia. Types 2 and 3 were not found in the eastern European country (Hungary), where all but one of the donors were infected with type 1. Donors from Japan and Taiwan were infected only with type 1 or 2, while types 1, 2, and 6 were found in those from Hong Kong. HCV infection among Egyptians was almost always by type 4. Donors infected with HCV type 1 showed broad serological reactivity with all four antigens of the second generation Chiron RIBA-2 assay (Chiron Corporation, Emeryville, Calif.), while infection with divergent HCV genotypes elicited antibodies mainly reactive to c22-3 and c33c. Reactivities with antibodies 5-1-1 and c100-3 were infrequent and were generally weak, irrespective of the geographical origin of the donor. Because the envelope region of HCV is even more variable than the NS-4 region, it is likely that vaccines based on these proteins need to be multivalent and perhaps specifically adapted for different geographical regions.link_to_subscribed_fulltex

    LARGE Expression Augments the Glycosylation of Glycoproteins in Addition to α-Dystroglycan Conferring Laminin Binding

    Get PDF
    Mutations in genes encoding glycosyltransferases (and presumed glycosyltransferases) that affect glycosylation and extracellular matrix binding activity of α-dystroglycan (α-DG) cause congenital muscular dystrophies (CMDs) with central nervous system manifestations. Among the identified genes, LARGE is of particular interest because its overexpression rescues glycosylation defects of α-DG in mutations of not only LARGE but also other CMD-causing genes and restores laminin binding activity of α-DG. It is not known whether LARGE protein glycosylates other proteins in addition to α-DG. In this study, we overexpressed LARGE in DG-deficient cells and analyzed glycosylated proteins by Western blot analysis. Surprisingly, overexpression of LARGE in α-DG-deficient cells led to glycosylation dependent IIH6C4 and VIA4-1 immunoreactivity, despite the prevailing view that these antibodies only recognize glycosylated α-DG. Furthermore, the hyperglycosylated proteins in LARGE-overexpressing cells demonstrated the functional capacity to bind the extracellular matrix molecule laminin and promote laminin assembly at the cell surface, an effect that was blocked by IIH6C4 antibodies. These results indicate that overexpression of LARGE catalyzes the glycosylation of at least one other glycoprotein in addition to α-DG, and that this glycosylation(s) promotes laminin binding activity

    Keratan sulphate in the tumour environment

    Get PDF
    Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes

    Augenärztliche Studien in Deutsch-Ostafrika

    No full text
    n/
    • …
    corecore