11,409 research outputs found

    Deviations from Tribimaximal Neutrino Mixing using a Model with Δ(27)\Delta(27) Symmetry

    Full text link
    We present a model of neutrino mixing based on the flavour group Δ(27)\Delta(27) in order to account for the observation of a non-zero reactor mixing angle (θ13\theta_{13}). The model provides a common flavour structure for the charged-lepton and the neutrino sectors, giving their mass matrices a `circulant-plus-diagonal' form. Mass matrices of this form readily lead to mixing patterns with realistic deviations from tribimaximal mixing, including non-zero θ13\theta_{13}. With the parameters constrained by existing measurements, our model predicts an inverted neutrino mass hierarchy. We obtain two distinct sets of solutions in which the atmospheric mixing angle lies in the first and the second octants. The first (second) octant solution predicts the lightest neutrino mass, m329 meVm_3 \sim 29~\text{meV} (m365 meVm_3 \sim 65~\text{meV}) and the CPCP phase, δCPπ4\delta_{CP} \sim -\frac{\pi}{4} (δCPπ2\delta_{CP} \sim \frac{\pi}{2}), offering the possibility of large observable CPCP violating effects in future experiments.Comment: 9 pages, 3 figure

    Fully Constrained Majorana Neutrino Mass Matrices Using Σ(72×3)\Sigma(72\times 3)

    Full text link
    In 2002, two neutrino mixing ansatze having trimaximally-mixed middle (ν2\nu_2) columns, namely tri-chi-maximal mixing (TχM\text{T}\chi\text{M}) and tri-phi-maximal mixing (TϕM\text{T}\phi\text{M}), were proposed. In 2012, it was shown that TχM\text{T}\chi\text{M} with χ=±π16\chi=\pm \frac{\pi}{16} as well as TϕM\text{T}\phi\text{M} with ϕ=±π16\phi = \pm \frac{\pi}{16} leads to the solution, sin2θ13=23sin2π16\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \frac{\pi}{16}, consistent with the latest measurements of the reactor mixing angle, θ13\theta_{13}. To obtain TχM(χ=±π16)\text{T}\chi\text{M}_{(\chi=\pm \frac{\pi}{16})} and TϕM(ϕ=±π16)\text{T}\phi\text{M}_{(\phi=\pm \frac{\pi}{16})}, the type~I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m1:m2:m3=(2+2)1+2(2+2):1:(2+2)1+2(2+2)m_1:m_2:m_3=\frac{\left(2+\sqrt{2}\right)}{1+\sqrt{2(2+\sqrt{2})}}:1:\frac{\left(2+\sqrt{2}\right)}{-1+\sqrt{2(2+\sqrt{2})}}. In this paper we construct a flavour model based on the discrete group Σ(72×3)\Sigma(72\times 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3×33\times 3 matrix with 6 complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex 6 dimensional representation of Σ(72×3)\Sigma(72\times 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.Comment: 20 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1402.085

    MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    Get PDF
    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.Environmental Economics and Policy, Livestock Production/Industries,

    The effect of Mach number on unstable disturbances in shock/boundary-layer interactions

    No full text
    The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes

    MODELING NITROGEN LOADING RATE TO DELAWARE LAKES USING REGRESSION AND NEURAL NETWORKS

    Get PDF
    The objective of this research was to predict the nitrogen-loading rate to Delaware lakes and streams using regression analysis and neural networks. Both models relate nitrogen-loading rate to cropland, soil type and presence of broiler production. Dummy variables were used to represent soil type and the presence of broiler production at a watershed. Data collected by Ritter & Harris (1984) was used in this research. To build the regression model Statistical Analysis System (SAS) was used. NeuroShell Easy Predictor, neural network software was used to develop the neural network model. Model adequacy was established by statistical techniques. A comparison of the regression and neural network models showed that both perform equally well. Cropland was the only significant variable that had any influence on the nitrogen-loading rate according to both the models.Environmental Economics and Policy,

    Equipoise, design bias, and randomized controlled trials: the elusive ethics of new drug development

    Get PDF
    The concept of 'equipoise', or the 'uncertainty principle', has been represented as a central ethical principle, and holds that a subject may be enrolled in a randomized controlled trial (RCT) only if there is true uncertainty about which of the trial arms is most likely to benefit the patient. We sought to estimate the frequency with which equipoise conditions were met in industry-sponsored RCTs in rheumatology, to explore the reasons for any deviations from equipoise, to examine the concept of 'design bias', and to consider alternative ethical formulations that might improve subject safety and autonomy. We studied abstracts accepted for the 2001 American College of Rheumatology meetings that reported RCTs, acknowledged industry sponsorship, and had clinical end-points (n = 45), and examined the proportion of studies that favored the registration or marketing of the sponsor's drug. In every trial (45/45) results were favorable to the sponsor, indicating that results could have been predicted in advance solely by knowledge of sponsorship (P < 0.0001). Equipoise clearly was being systematically violated. Publication bias appeared to be an incomplete explanation for this dramatic result; this bias occurs after a study is completed. Rather, we hypothesize that 'design bias', in which extensive preliminary data are used to design studies with a high likelihood of being positive, is the major cause of the asymmetric results. Design 'bias' occurs before the trial is begun and is inconsistent with the equipoise principle. However, design bias increases scientific efficiency, decreases drug development costs, and limits the number of subjects required, probably reducing aggregate risks to participants. Conceptual and ethical issues were found with the equipoise principle, which encourages performance of negative studies; ignores patient values, patient autonomy, and social benefits; is applied at a conceptually inappropriate decision point (after randomization rather than before); and is in conflict with the Belmont, Nuremberg, and other sets of ethical principles, as well as with US Food and Drug Administration procedures. We propose a principle of 'positive expected outcomes', which informs the assessment that a trial is ethical, together with a restatement of the priority of personal autonomy
    corecore