6,429 research outputs found
Recommended from our members
Mechanical Properties of Pure Titanium Models Processed by Selective Laser Melting
The influence of laser processing parameters on mechanical properties and microstructure
of pure titanium models made by selective laser melting is investigated. The density of the
models can reach higher than 95% under proper conditions. Although the tensile strength test
shows results comparable to the wrought material, the impact and torsional fatigue strengths are
low because of porosity and oxygen pick-up suggested by increasing of hardness. Hot isostatic
pressing allows almost full densification and greatly improves mechanical properties.Mechanical Engineerin
Constraints on the disk geometry of the T Tauri star AA Tau from linear polarimetry
We have simultaneously monitored the photometric and polarimetric variations
of the Classical T Tauri star AA Tau during the fall of 2002. We combine these
data with previously published polarimetric data covering two earlier epochs.
The phase coverage is complete, although not contiguous. AA Tau clearly shows
cyclic variations coupled with the rotation of the system. The star-disk system
produces a repeatable polarisation curve where the polarisation increases with
decreasing brightness. The data fit well with the model put forward by Bouvier
et al. (1999) where AA Tau is viewed almost edge-on and its disk is actively
dumping material onto the central star via magnetospheric accretion. The inner
edge of the disk is deformed by its interaction with the tilted magnetosphere,
producing eclipses as it rotates and occults the photosphere periodically. From
the shape of the polarisation curve in the QU-Plane we confirm that the
accretion disk is seen at a large inclination, almost edge-on, and predict that
its position angle is PA~90 deg., i.e., that the disk's major axis is oriented
in the East-West direction.Comment: Astron. Astrophys., in pres
Hubbard band or oxygen vacancy states in the correlated electron metal SrVO?
We study the effect of oxygen vacancies on the electronic structure of the
model strongly correlated metal SrVO. By means of angle-resolved
photoemission (ARPES) synchrotron experiments, we investigate the systematic
effect of the UV dose on the measured spectra. We observe the onset of a
spurious dose-dependent prominent peak at an energy range were the lower
Hubbard band has been previously reported in this compound, raising questions
on its previous interpretation. By a careful analysis of the dose dependent
effects we succeed in disentangling the contributions coming from the oxygen
vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES
spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard
band remains. We support our study by means of state-of-the-art ab initio
calculations that include correlation effects and the presence of oxygen
vacancies. Our results underscore the relevance of potential spurious states
affecting ARPES experiments in correlated metals, which are associated to the
ubiquitous oxygen vacancies as extensively reported in the context of a
two-dimensional electron gas (2DEG) at the surface of insulating
transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure
Cascading disasters triggered by tsunami hazards: A perspective for critical infrastructure resilience and disaster risk reduction
Although many studies have investigated relationships between tsunami characteristics and the impact on physical property and infrastructure, such information cannot explain how the damage to each object or type of infrastructure can trigger failures of other facilities. To understand these connections and the cascading impacts, this article reviewed several recent damaging tsunami events in Japan and Indonesia, including the 2004 Indian Ocean tsunami and the 2011 Great East Japan Earthquake and tsunami. A proposed cascading magnitude scale was applied to each tsunami event to determine and categorize causes, effects, and escalation points. Large tsunamis tend to be associated with earthquakes, liquefaction, and landslides that multiply the scale of impact. The main escalation points for tsunami related disasters were found to be failures of tsunami warnings, power plants, medical facilities, educational facilities, and infrastructure. From the perspectives of critical infrastructure resilience and disaster risk reduction, analysis of cascading impacts of multiple recent tsunami events could contribute to greater understanding of economic, political, and social impacts that stem from technical decisions regarding infrastructure management. Detailed examples of tsunami cases demonstrate the potential scale and extent of damage from cascading events, and by identifying the roles and examples of escalation points, disaster managers and decision-makers can better mitigate cascading impacts by targeting and preventing escalation points. However, more detailed investigation on tsunami characteristics and their impact on failures of each type of facility is still needed to develop tools to support decision-making for better emergency management to address short- and long-term social impacts
Low Mach number effect in simulation of high Mach number flow
In this note, we relate the two well-known difficulties of Godunov schemes:
the carbuncle phenomena in simulating high Mach number flow, and the inaccurate
pressure profile in simulating low Mach number flow. We introduced two simple
low-Mach-number modifications for the classical Roe flux to decrease the
difference between the acoustic and advection contributions of the numerical
dissipation. While the first modification increases the local numerical
dissipation, the second decreases it. The numerical tests on the double-Mach
reflection problem show that both modifications eliminate the kinked Mach stem
suffered by the original flux. These results suggest that, other than
insufficient numerical dissipation near the shock front, the carbuncle
phenomena is strongly relevant to the non-comparable acoustic and advection
contributions of the numerical dissipation produced by Godunov schemes due to
the low Mach number effect.Comment: 9 pages, 1 figur
Hypersurface homogeneous locally rotationally symmetric spacetimes admitting conformal symmetries
All hypersurface homogeneous locally rotationally symmetric spacetimes which
admit conformal symmetries are determined and the symmetry vectors are given
explicitly. It is shown that these spacetimes must be considered in two sets.
One set containing Ellis Class II and the other containing Ellis Class I, III
LRS spacetimes. The determination of the conformal algebra in the first set is
achieved by systematizing and completing results on the determination of CKVs
in 2+2 decomposable spacetimes. In the second set new methods are developed.
The results are applied to obtain the classification of the conformal algebra
of all static LRS spacetimes in terms of geometrical variables. Furthermore all
perfect fluid nontilted LRS spacetimes which admit proper conformal symmetries
are determined and the physical properties some of them are discussed.Comment: 15 pages; to appear in Classical Quantum Gravity; some misprints in
Tables 3,5 and in section 4 correcte
- …