443 research outputs found

    Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    Get PDF
    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used successfully in this case. This paper shows a highly testable architecture of a DNA Bio-Sensing array, its basic sensing concept, fluidic modeling and sensitivity analysis. The overall VHDL-AMS fault simulation of the system is shown

    Extracorporeal bullet trajectory determination from scanned phantoms with bullet defects

    Get PDF
    Shots with two different calibres (0.32 Auto and 9 mm Luger) were fired through phantoms that simulated human torsos, mounted on undercarriages with witness panels. The perforated phantoms were scanned with computed tomography (Siemens) using 80 kV and 140 kV and a slice thickness of 1 mm. The intracorporeal trajectories in the phantoms were compared to the known extracorporeal trajectories, derived from the perforations in witness panels. The discrepancy between the intracorporeal and extracorporeal trajectories, denoted as the absolute angle, was calculated for the trajectories before (front) and after (rear) the phantoms. Mean absolute angles at the front were lower than at the rear (2.27° vs. 4.54°) and the difference was statistically significant (p < 0.001). The results of the study imply that the line between the entrance and the exit wound in a scanned victim can be extended to the extracorporeal bullet trajectory leading towards the entrance wound. The absolute angles presented in this study give an impression of the expected errors with the two calibres. This can be helpful in shooting investigations to assess the position of the shooter from entrance and exit wounds in a scanned victim

    Plasmonic Cloaking of Cylinders: Finite Length, Oblique Illumination and Cross-Polarization Coupling

    Full text link
    Metamaterial cloaking has been proposed and studied in recent years following several interesting approaches. One of them, the scattering-cancellation technique, or plasmonic cloaking, exploits the plasmonic effects of suitably designed thin homogeneous metamaterial covers to drastically suppress the scattering of moderately sized objects within specific frequency ranges of interest. Besides its inherent simplicity, this technique also holds the promise of isotropic response and weak polarization dependence. Its theory has been applied extensively to symmetrical geometries and canonical 3D shapes, but its application to elongated objects has not been explored with the same level of detail. We derive here closed-form theoretical formulas for infinite cylinders under arbitrary wave incidence, and validate their performance with full-wave numerical simulations, also considering the effects of finite lengths and truncation effects in cylindrical objects. In particular, we find that a single isotropic (idealized) cloaking layer may successfully suppress the dominant scattering coefficients of moderately thin elongated objects, even for finite lengths comparable with the incident wavelength, providing a weak dependence on the incidence angle. These results may pave the way for application of plasmonic cloaking in a variety of practical scenarios of interest.Comment: 17 pages, 11 figures, 2 table

    Error estimation on extracorporeal trajectory determination from body scans.

    Get PDF
    This study explores the magnitude of two sources of error that are introduced when extracorporeal bullet trajectories are based on post-mortem computed tomography (PMCT) and/or surface scanning of a body. The first source of error is caused by an altered gravitational pull on soft tissue, which is introduced when a body is scanned in another position than it had when hit. The second source of error is introduced when scanned images are translated into a virtual representation of the victim's body. To study the combined magnitude of these errors, virtual shooting trajectories with known vertical angles through five "victims" (live test persons) were simulated. The positions of the simulated wounds on the bodies were marked, with the victims in upright positions. Next, the victims were scanned in supine position, using 3D surface scanning, similar to a body's position when scanned during a PMCT. Seven experts, used to working with 3D data, were asked to determine the bullet trajectories based on the virtual representations of the bodies. The errors between the known and determined trajectories were analysed and discussed. The results of this study give a feel for the magnitude of the introduced errors and can be used to reconstruct actual shooting incidents using PMCT data

    Comparison and interpretation of impressed marks left by a firearm on cartridge cases - Towards an operational implementation of a likelihood ratio based technique.

    Get PDF
    Firearm examination is subject to increased scrutiny regarding its foundational validity and inherent subjective nature. The increased use of automatic comparison systems may help to reduce subjectivity. In this paper, we present the performance and limits of an automatic comparison system that assigns a weight to the forensic findings for the comparisons between firing pin marks, breechface marks, or a combination of the two. This weight is expressed by a likelihood ratio (LR) based on 3D topographical measurements coupled with a bi-dimensional statistical model. As the performance of such systems may depend on the reference databases used to inform the model, we investigated the impact of the brand of ammunition and the number of samples. We show that reference databases used to calculate LRs should ideally consist of the same type of ammunition as is seen in the case under investigation and that 7 specimens fired by the same firearm are enough to obtain rates of misleading evidence of a similar magnitude compared to those obtained when far more specimens (60) are used. Additionally, the automatic system was used to assess the outcomes of 7 cases with known same-source or different-source ground truths. These cases were also examined by 8 qualified firearm examiners. In all cases, the experts' appraisals were in line with the ground truth. The automatic system showed some limitations in cases were the data were not sufficient to calculate a robust LR, but also that it can assist and enhance the examiners in their decision process

    Experimental Verification of 3D Plasmonic Cloaking in Free-Space

    Full text link
    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ

    Spectroscopy of a Cooper-Pair box in the Autler-Townes configuration

    Get PDF
    A theoretical spectroscopic analysis of a microwave driven superconducting charge qubit (Cooper-pair box coupled) to an RLC oscillator model is performed. By treating the oscillator as a probe through the backreaction effect of the qubit on the oscillator circuit, we extract frequency splitting features analogous to the Autler-Townes effect from quantum optics, thereby extending the analogies between superconducting and quantum optical phenomenology. These features are found in a frequency band that avoids the need for high frequency measurement systems and therefore may be of use in qubit characterization and coupling schemes. In addition we find this frequency band can be adjusted to suit an experimental frequency regime by changing the oscillator frequency.Comment: 13 pages, 7 figures. v2: Revised version after referee comments. Accepted for publication by Physical Review

    Investigation and Assessment of Resource Consumption of Process Chains

    Get PDF
    AbstractMany different technologies and processes have been established in production within the last decades. These technologies have to be integrated into sophisticated process chains to achieve today's requirements of high performance products. For most of these products the costs can be determined or at least estimated accurately. However, resource intensive and thus cost intensive processes and their potential within the process chains are often neither identified nor quantified. For identifying, measuring and subsequently assessing the need of resources, like energy or material and their monetary as well as environmental impact, four different process chains of high industrial relevance have been chosen and investigated with regards to their resource consumption. These process chains are used for manufacturing turbine blades made of Inconel and titanium aluminide as well as for comparisons of a conventional and an innovative process chain to manufacture an insert for an injection mold. By measuring and assessing their resource consumption the most resource intensive and thus influential processes have been identified and their potential for resource reduction has been evaluated. Due to the change of single processes to reduce resource consumption and thus the conditions for subsequent processes, the requirements might change and lead to adaptions within the entire process chain. For the assessment of the process chains and the changes within the processes themselves, a scenario based assessment has been modelled. This results in an economic and ecologic evaluation of these process chains and enables a comparison of these to choose the most meaningful process chain

    Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040 strongly reduces growth and improves lung structure

    Get PDF
    BACKGROUND: Signaling networks promoting cell growth and proliferation are frequently deregulated in cancer. Tumors often are highly dependent on such signaling pathways and may become hypersensitive to downregulation of key components within these signaling cascades. The classical mitogenic cascade transmits stimuli from growth factor receptors via Ras, Raf, MEK and ERK to the cell nucleus and provides attractive molecular targets for cancer treatment. For example, Ras and Raf kinase inhibitors are already in a number of ongoing phase II and phase III clinical trials. In this study the effect of the Raf kinase inhibitor BAY 43-9006 and of the MEK inhibitor CI-1040 (PD184352) on a Raf dependent lung tumor mouse model was analyzed in detail. METHODS: We have generated a lung cancer mouse model by targeting constitutively active C-Raf kinase to the lung. These mice develop adenomas within 4 months of life. At this time-point they received daily intraperitoneal injections of either 100 mg/kg BAY 43-9006 or CI-1040 for additional 21 days. Thereafter, lungs were isolated and the following parameters were analyzed using histology and immunohistochemistry: overall lung structure, frequency of adenoma foci, proliferation rate, ERK activity, caspase-3 activation, and lung differentiation. RESULTS: Both inhibitors were equally effective in vitro using a sensitive Raf/MEK/ERK ELISA. In vivo, the systemic administration of the MEK inhibitor CI-1040 reduced adenoma formation to a third and significantly restored lung structure. The proliferation rate of lung cells of mice treated with CL-1040 was decreased without any obvious effects on differentiation of pneumocytes. In contrast, the Raf inhibitor BAY 43-9006 did not influence adenoma formation in vivo. CONCLUSION: The MEK inhibitor CI-1040 may be used for the treatment of Ras and/or Raf-dependent human malignancies
    corecore