340 research outputs found

    Forward dispersion relations and Roy equations in pi-pi scattering

    Get PDF
    We review results of an analysis of pipi interactions in S, P and D waves for two-pion effective mass from threshold to about 1.4 GeV. In particular we show a recent improvement of this analysis above the K anti-K threshold using more data for phase shifts and including the S0 wave inelasticity from pipi -> K anti-K. In addition, we have improved the fit to the f2(1270) resonance and used a more flexible P wave parametrization above the K anti-K threshold and included an estimation of the D2 wave inelasticity. The better accuracy thus achieved also required a refinement of the Regge analysis above 1.42 GeV. We have checked that the pipi scattering amplitudes obtained in this approach satisfy remarkably well forward dispersion relations and Roy's equations.Comment: 6 pages, invited talk to the IV International Conference on Quarks and Nuclear Physics QNP06, Madrid 5th-10th June 200

    Widespread HCN maser emission in carbon-rich evolved stars

    Full text link
    Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are known to show maser action. Historically, in one of them, the 177 GHz J=21J=2\rightarrow1 line in the ll-doubled bending mode has been found to show relatively strong maser action, with results only published for a single object, the archetypical high-mass loss asymptotic giant branch (AGB) star IRC+10216. Aims. To examine how common 177 GHz HCN maser emission is, we conducted an exploratory survey for this line toward a select sample of carbon-rich asymptotic giant branch stars that are observable from the southern hemisphere. Methods. We used the Atacama Pathfinder Experiment 12 meter submillimeter Telescope (APEX) equipped with a new receiver to simultaneously observe three J=21J=2\rightarrow1 HCN rotational transitions, the (0,11c,0)(0,1^{{1}_{\rm c}},0) and (0,11d,0)(0,1^{{1}_{\rm d}},0) ll-doublet components, and the line from the (0,0,0) ground state. Results. The (0,11c,0)(0,1^{{1}_{\rm c}},0) maser line is detected toward 11 of 13 observed sources, which all show emission in the (0,0,0) transition. In most of the sources, the peak intensity of the (0,11c,0)(0,1^{{1}_{\rm c}},0) line rivals that of the (0,0,0) line; in two sources, it is even stronger. Except for the object with the highest mass-loss rate, IRC+10216, the (0,11c,0)(0,1^{{1}_{\rm c}},0) line covers a smaller velocity range than the (0,0,0) line. Conclusions. Maser emission in the 177 GHz J=21J=2\rightarrow1 (0,11c,0)(0,1^{{1}_{\rm c}},0) line of HCN appears to be common in carbon-rich AGB stars. (Abbreviated)Comment: 12 pages (including appendix), 3 figures / Astronomy & Astrophysics (in press

    The pion-pion scattering amplitude. II: Improved analysis above KˉK\bar{K}K threshold

    Get PDF
    We improve, in the energy region between KˉK\bar{K}K threshold and  1.4\sim~1.4 GeV, the energy-dependent phase shift analysis of ππ\pi\pi scattering presented in a previous paper. For the S0 wave we have included more data above KˉK\bar{K}K threshold and we have taken into account systematically the elasticity data on the reaction ππKˉK\pi\pi\to\bar{K}K. We here made a coupled channel fit. For the D0 wave we have considered information on low energy parameters, and imposed a better fit to the f2f_2 resonance. For both waves the expressions we now find are substantially more precise than the previous ones. We also provide slightly improved D2 and P waves, including the estimated inelasticity for the first, and a more flexible parametrization between 1 and 1.42 GeV for the second. The accuracy of our amplitudes is now such that it requires a refinement of the Regge analysis, for s1/21.42s^{1/2}\geq1.42 GeV, which we also carry out. We show that this more realistic input produces ππ\pi\pi scattering amplitudes that satisfy better forward dispersion relations, particularly for π0π0\pi^0\pi^0 scattering.Comment: Plain TeX. 12 figures. Minor anomaly in the K-matrix fit corrected by moving matching point to 932 MeV, and pole M1M_1 to 910.6 MeV. Results unaltere

    The pion-pion scattering amplitude. III: Improving the analysis with forward dispersion relations and Roy equations

    Get PDF
    We complete and improve the fits to experimental ππ\pi\pi scattering amplitudes, both at low and high energies, that we performed in the previous papers of this series. We then verify that the corresponding amplitudes satisfy analyticity requirements, in the form of partial wave analyticity at low energies, forward dispersion relations (FDR) at all energies, and Roy equations belowKˉK\bar{K}K threshold; the first by construction, the last two, inside experimental errors. Then we repeat the fits including as constraints FDR and Roy equations. The ensuing central values of the various scattering amplitudes verify very accurately FDR and, especially, Roy equations, and change very little from what we found by just fitting data, with the exception of the D2 wave phase shift, for which one parameter moves by 1.5σ1.5 \sigma. These improved parametrizations therefore provide a reliable representation of pion-pion amplitudes with which one can test various physical relations. We also present a list of low energy parameters and other observables. In particular, we find a0(0)=0.223±0.009Mπ1a_0^{(0)}=0.223\pm0.009 M^{-1}_\pi, a0(2)=0.0444±0.0045Mπ1a_0^{(2)}=-0.0444\pm0.0045 M^{-1}_\pi and δ0(0)(mK2)δ0(2)(mK2)=50.9±1.2o\delta_0^{(0)}(m^2_K)-\delta_0^{(2)}(m^2_K)=50.9\pm1.2^{\rm o}.Comment: Plain TeX. 29 figures. Version to be published in PRD, with improved P and F wave

    Precise dispersive data analysis of the f0(600) pole

    Get PDF
    We review how the use of recent precise data on kaon decays together with forward dispersion relations (FDR) and Roy's equations allow us to determine the sigma resonance pole position very precisely, by using only experimental input. In addition, we present preliminary results for a modified set of Roy-like equations with only one subtraction, that show a remarkable improvement in the precision around the sigma region. We also improve the matching between the parametrizations at low and intermediate energy of the S0 wave, and show that the effect of this on the sigma pole position is negligible.Comment: 4 pages, 1 figure. To appear in the proceedings of the Meson 2008 conference, June 6-10, Cracow, Polan

    Eikonal perturbation theory in photoionization

    Get PDF
    The eikonal perturbation theory is formulated and applied to photoionization by strong laser pulses. A special emphasis is put on the first order approximation with respect to the binding potential, which is known as the generalized eikonal approximation [2015 Phys. Rev. A 91 053417]. The ordinary eikonal approximation and its domain of applicability is derived from the generalized eikonal approximation. While the former approach is singular for the electron trajectories which return to the potential center, the generalized eikonal avoids this problem. This property makes it a promising tool for further investigations of rescattering and high-order harmonic generation processes

    Vortex Structures and Momentum Sharing in Dynamic Sauter-Schwinger Process

    Full text link
    Vortex pattern formation in electron-positron pair creation from vacuum by a time-dependent electric field of linear polarization is analyzed. It is demonstrated that in such scenario the momentum distributions of created particles exhibit vortex-antivortex pairs. Their sensitivity to the laser field parameters such as the field frequency and intensity is also studied. Specifically, it is shown that with increasing field frequency accross the one-photon threshold additional vortex-antivortex pairs appear. Their location in the momentum space is consistent with a general threshold behavior of probability distributions of created electrons (positrons). Namely, while for small field frequencies the particles tend to be created along the field polarization direction, for large enough frequencies they are predominantly generated in the perpendicular direction. Such change in longitudinal and transverse momentum sharing of created particles occurs accross the one-photon threshold.Comment: This article belongs to the special issue of Acta Physica Polonica A printed in honor of Professor Iwo Bialynicki-Birula on the occasion of his 90th birthday (Ed. Tomasz Sowinski, DOI:10.12693/APhysPolA.143.S0

    Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

    Full text link
    Peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed analyzing the experimental data on processes ππππ,KKˉ\pi\pi\to\pi\pi,K\bar{K} in the IGJPC=0+0++I^GJ^{PC}=0^+0^{++} channel in a model-independent approach based on analyticity and unitarity and using an uniformization procedure. We show that it is possible to obtain a good description of the ππ\pi\pi scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the PDG tables as preferred. However, in this case, first, representation of the ππ\pi\pi background is unsatisfactory; second, the data on the coupled process ππKKˉ\pi\pi\to K\bar{K} are not well described even qualitatively above 1.15 GeV when using the resonance parameters from the only ππ\pi\pi scattering analysis. The combined analysis of these coupled processes is needed, which is carried out satisfactorily. Then both above-indicated flaws, related to the analysis of solely the ππ\pi\pi-scattering, are cured. The most remarkable change of parameters with respect to the values of only ππ\pi\pi scattering analysis appears for the mass of the f0(600)f_0 (600) which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-NcN_c consistency conditions between the unitarization and resonance saturation. The obtained ππ\pi\pi-scattering length a00a_0^0 in case when we restrict to the analysis of the ππ\pi\pi scattering or consider so-called A-solution (with a lower mass and width of f0(600)f_0(600) meson) agrees well with prediction of chiral perturbation theory (ChPT) and with data extracted at CERN by the NA48/2 Collaboration from the analysis of the Ke4K_{e4} decay and by the DIRAC Collaboration from the measurement of the π+π\pi^+\pi^- lifetime.Comment: 21 pages, 3 figures, 6 table
    corecore