15 research outputs found

    Inner products of resonance solutions in 1-D quantum barriers

    Get PDF
    The properties of a prescription for the inner products of the resonance (Gamow states), scattering (Dirac kets), and bound states for 1-dimensional quantum barriers are worked out. The divergent asypmtotic behaviour of the Gamow states is regularized using a Gaussian convergence factor first introduced by Zel'dovich. With this prescription, most of these states (with discrete complex energies) are found to be orthogonal to each other, to the bound states, and to the Dirac kets, except when they are neighbors, in which case the inner product is divergent. Therefore, as it happens for the continuum scattering states, the norm of the resonant ones remains non-calculable. Thus, they exhibit properties half way between the (continuum real) Dirac-delta orthogonality and the (discrete real) Kronecker-delta orthogonality of the bound states.Comment: 13 pages, 2 figure

    Tunnelling of plane waves through a square barrier

    Full text link
    The time evolution of plane waves in the presence of a 1-dimensional square quantum barrier is considered. Comparison is made between the cases of an infinite and a cut-off (shutter) initial plane wave. The difference is relevant when the results are applied to the analysis of the tunnelling regime. This work is focused on the analytical calculation of the time-evolved solution and highlights the contribution of the resonant (Gamow) states. PACS numbers: 11.10.Ef, 11.10.Lm, 04.60Comment: 16 page

    Time of arrival in the presence of interactions

    Get PDF
    We introduce a formalism for the calculation of the time of arrival t at a space point for particles traveling through interacting media. We develop a general formulation that employs quantum canonical transformations from the free to the interacting cases to construct t in the context of the Positive Operator Valued Measures. We then compute the probability distribution in the times of arrival at a point for particles that have undergone reflection, transmission or tunneling off finite potential barriers. For narrow Gaussian initial wave packets we obtain multimodal time distributions of the reflected packets and a combination of the Hartman effect with unexpected retardation in tunneling. We also employ explicitly our formalism to deal with arrivals in the interaction region for the step and linear potentials.Comment: 20 pages including 5 eps figure
    corecore