807 research outputs found

    First results of the OROMA experiment in the Lister Tief of the German Bight in the North Sea, EARSeL Proceedings

    Get PDF
    The objective of the project entitled “Operational Radar and Optical Mapping in monitoring hydrodynamic, morphodynamic and environmental parameters for coastal management (OROMA)” within the Fifth Framework Programme of the European Commission (EC) is to improve the effectiveness of monitoring technologies in coastal waters. The Research Vessel (R.V.) Ludwig Prandtl of the GKSS research centre was equipped with special sensors and instruments to measure the position of the ship, the water depth, the salinity, the water temperature, the current speed and direction, the modulation characteristics of short-wave energies, and relevant air-sea interaction parameters due to the presence of submarine sand waves. The first experiment of the OROMA project on 5-16 August 2002 took place in the Lister Tief, a tidal inlet of the German Bight in the North Sea. The seabed morphology of the Lister Tief reveals a complex configuration of different bedforms which is four-dimensional in space and time. A significant upward orientated component uvert of the three-dimensional current velocity field was observed. Marked vertically so-called waterspouts of uvert above the crests of sand waves have been measured by the Acoustic Doppler Current Profiler (ADCP) as straight lines. They cause water upwelling with turbulence patterns at the water surface affecting the Normalized Radar Cross Section (NRCS) modulation. A first impression of expected NRCS modulation signatures of sea bottom topography detected by the GKSS shipborne X-band radar are presented as an uncalibrated composite of five single sea clutter images acquired in the Lister Tief on 22 November 1990

    Comment on ``Conduction states in oxide perovskites: Three manifestations of Ti3+^{3 +} Jahn-Teller polarons in barium titanate''

    Full text link
    In this comment to [S. Lenjer, O. F. Schirmer, H. Hesse, and Th. W. Kool, Phys. Rev. B {\bf 66}, 165106 (2002)] we discuss the electronic structure of oxygen vacancies in perovskites. First principles computations are in favour of rather deep levels in these vacancies, and Lenjer et al suggest that the electrons' interaction energy is negative, but data on electroconductivity are against.Comment: 2 pages, no figure

    A dilemma in representing observables in quantum mechanics

    Get PDF
    There are self-adjoint operators which determine both spectral and semispectral measures. These measures have very different commutativity and covariance properties. This fact poses a serious question on the physical meaning of such a self-adjoint operator and its associated operator measures.Comment: 10 page

    The Geometry of Quantum Mechanics

    Get PDF
    A recent notion in theoretical physics is that not all quantum theories arise from quantising a classical system. Also, a given quantum model may possess more than just one classical limit. These facts find strong evidence in string duality and M-theory, and it has been suggested that they should also have a counterpart in quantum mechanics. In view of these developments we propose "dequantisation", a mechanism to render a quantum theory classical. Specifically, we present a geometric procedure to "dequantise" a given quantum mechanics (regardless of its classical origin, if any) to possibly different classical limits, whose quantisation gives back the original quantum theory. The standard classical limit ℏ→0\hbar\to 0 arises as a particular case of our approach.Comment: 15 pages, LaTe

    Quasi-Quantum Groups, Knots, Three-Manifolds, and Topological Field Theory

    Full text link
    We show how to construct, starting from a quasi-Hopf algebra, or quasi-quantum group, invariants of knots and links. In some cases, these invariants give rise to invariants of the three-manifolds obtained by surgery along these links. This happens for a finite-dimensional quasi-quantum group, whose definition involves a finite group GG, and a 3-cocycle \om, which was first studied by Dijkgraaf, Pasquier and Roche. We treat this example in more detail, and argue that in this case the invariants agree with the partition function of the topological field theory of Dijkgraaf and Witten depending on the same data G, \,\om.Comment: 30 page

    Exclusion Limits on the WIMP-Nucleon Cross-Section from the First Run of the Cryogenic Dark Matter Search in the Soudan Underground Lab

    Full text link
    The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with >96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ~10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface-electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross-section has a minimum of 4x10^-43 cm^2 at a WIMP mass of 60 GeV/c^2. The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross-section is 2x10^-37 cm^2 at a WIMP mass of 50 GeV/c^2.Comment: 37 pages, 42 figure

    Analysis of the low-energy electron-recoil spectrum of the CDMS experiment

    Get PDF
    We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2 - 8.5 keV. We find no significant excess in the counting rate above background, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0.246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA by 8.9σ\sigma. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z^2 scaling. With this assumption the observed rate in DAMA differs from the upper limit in CDMS by 6.8σ\sigma. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of ~2 less than observed by DAMA, constraining some possible interpretations of this modulation.Comment: 4 pages, 3 figure
    • 

    corecore