28 research outputs found

    Farbtafel zur Bestimmung der Verfärbung von Kartoffelrohbrei

    No full text

    IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling

    No full text
    Summary: Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance. : Timper et al. find that central IL-6 improves energy and glucose homeostasis via IL-6 trans-signaling. IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance. Keywords: interleukin-6, CNS, obesity, interleukin-6 trans-signaling, energy homeostasis, glucose homeostasi

    IL-6/Stat3-dependent induction of a distinct, obesity-associated NK cell subpopulation deteriorates energy and glucose homeostasis

    No full text
    Natural killer (NK) cells contribute to the development of obesity-associated insulin resistance. We demonstrate that in mice obesity promotes expansion of a distinct, interleukin-6 receptor (IL6R)a-expressing NK subpopulation, which also expresses a number of other myeloid lineage genes such as the colony-stimulating factor 1 receptor (Csf1r). Selective ablation of this Csf1r-expressing NK cell population prevents obesity and insulin resistance. Moreover, conditional inactivation of IL6Ra or Stat3 in NK cells limits obesity-associated formation of these myeloid signature NK cells, protecting from obesity, insulin resistance, and obesity-associated inflammation. Also in humans IL6Ra<sup>+</sup> NK cells increase in obesity and correlate with markers of systemic low-grade inflammation, and their gene expression profile overlaps with characteristic gene sets of NK cells in obese mice. Collectively, we demonstrate that obesity-associated inflammation and metabolic disturbances depend on interleukin-6/Stat3-dependent formation of a distinct NK population, which may provide a target for the treatment of obesity, metaflammation-associated pathologies, and diabetes
    corecore