3,009 research outputs found

    Cobalt base superalloy has outstanding properties up to 1478 K (2200 F)

    Get PDF
    Alloy VM-103 is especially promising for use in applications requiring short time exposure to very high temperatures. Its properties over broad range of temperatures are superior to those of comparable commercial wrought cobalt-base superalloys, L-605 and HS-188

    My Creed

    Get PDF

    Burst avalanches in solvable models of fibrous materials

    Full text link
    We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, and the distribution D(Δ)D(\Delta) of the magnitude Δ\Delta of such avalanches is the central characteristics in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and contrasted: the global model in which the load carried by a bursting fiber is equally distributed among the surviving members, and the local model in which the nearest surviving neighbors take up the load. For the global model we investigate in particular the conditions on the threshold distribution which would lead to anomalous behavior, i.e. deviations from the asymptotics D(Δ)∼Δ−5/2D(\Delta) \sim \Delta^{-5/2}, known to be the generic behavior. For the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n−1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    Morphological characterization of shocked porous material

    Full text link
    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodynamical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area AA roughly gives the velocity DD of a compressive-wave-series. When a velocity DD is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, DD becomes smaller. The area AA increases parabolically with time tt during the initial period. The A(t)A(t) curve goes back to be linear in the following three cases: (i) when the porosity δ\delta approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)Comment: 3 figures in JPG forma

    Traveling Wave Fronts and Localized Traveling Wave Convection in Binary Fluid Mixtures

    Full text link
    Nonlinear fronts between spatially extended traveling wave convection (TW) and quiescent fluid and spatially localized traveling waves (LTWs) are investigated in quantitative detail in the bistable regime of binary fluid mixtures heated from below. A finite-difference method is used to solve the full hydrodynamic field equations in a vertical cross section of the layer perpendicular to the convection roll axes. Results are presented for ethanol-water parameters with several strongly negative separation ratios where TW solutions bifurcate subcritically. Fronts and LTWs are compared with each other and similarities and differences are elucidated. Phase propagation out of the quiescent fluid into the convective structure entails a unique selection of the latter while fronts and interfaces where the phase moves into the quiescent state behave differently. Interpretations of various experimental observations are suggested.Comment: 46 pages, 11 figures. Accepted for publication in Phys. Rev.

    Spatial ecology of the critically endangered Fijian crested iguana, Brachylophus vitiensis, in an extremely dense population: implications for conservation

    No full text
    The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs.This work was supported by the International Iguana Foundation, the Australian National University (field work grant), the Federation of Australian Women (Georgina Sweet fellowship), the Ecological Society of Australia (student research award) and the Taronga Foundation

    Chronic vulvar pain in a cohort of post-menopausal women: Atrophy or Vulvodynia?

    Get PDF
    Abstract Background Although postmenopausal vulvar pain is frequently attributed to vaginal atrophy, such symptoms may be due to vulvodynia, a chronic vulvar pain condition. Given the limited research on vulvodynia in postmenopausal women, the objective of this study was to provide preliminary population-based data on the associations of vaginal symptoms, serum hormone levels and hormone use with chronic vulvar pain in a multiethnic sample of post-menopausal women. Methods We used data from 371 participants at the Michigan site of the Study of Women’s Health Across the Nation (SWAN) who participated in the 13th follow-up visit. Women completed a validated screening instrument for vulvodynia and provided information on additional vaginal symptoms as well as demographic characteristics, and hormone use by questionnaire. Blood samples were obtained to assess hormone levels. We compared women who screened positive for vulvodynia and women with past or short-duration vulvar pain to women without vulvar pain, using Chi-squared and Fisher’s Exact tests. Relative odds ratios and 95 % confidence intervals were calculated using multinomial logistic regression models adjusting for age, body mass index, and race/ethnicity. Results Current chronic vulvar pain consistent with vulvodynia was reported by 4.0 % of women, while 13.7 % reported past but not current chronic vulvar pain or short-duration vulvar pain symptoms. One quarter of women who reported current chronic vulvar pain did not report vaginal dryness. Women with current chronic and with past/short duration vulvar pain symptoms were more likely to have used hormones during the preceding year than women without vulvar pain symptoms (13.3 %, 17.6 %, 2.0 %, respectively; p < .01). Increased relative odds of current vulvar pain symptoms were associated with each log unit decrease in serum dehydroepiandrosterone-sulfate, estradiol and testosterone levels at the previous year’s visit. Conclusion Some women who experience chronic vulvar pain symptoms do not report vaginal dryness, and others report continued or first onset of pain while using hormones. Vulvodynia should be considered in the differential diagnosis of postmenopausal women presenting with vulvar pain symptoms.http://deepblue.lib.umich.edu/bitstream/2027.42/134593/1/40695_2016_Article_17.pd

    Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the DMRT-ML Model

    Get PDF
    DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python
    • …
    corecore