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INTRODUCTION TO FINITEDIFFERENCE METHODS 

FOR NUMERICAL FLUID DYNAMICS 

bY 

Evan Scannapieco and Francis H. Harlow 

ABSTRACT 

This work is intended to be a beginner’s exercise book for the study of basic finite- 

difference techniques in computational fluid dynamics. It is written for a student level 

ranging from high-school senior to university senior. Equations are derived from basic 

principles using algebra. Some discussion of partial-differential equations is included, but 

knowledge of calculus is not essential. The student is expected, however, to have some 

familiarity with the FORTRAN computer language, as the syntax of the computer codes 

themselves is not discussed. Topics examined in this work include: onedimensional heat 

flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and 

two-dimensional incompressible fluid flow with additions of the equations of heat flow and 

the K - E model for turbulence transport. Emphasis is placed on numerical instabilities 

and methods by which they can be avoided, techniques that can be used to evaluate the 

accuracy of finitedifference approximations, and the writing of the finitedifference codes 

themselves. Concepts introduced in this work include: flux and conservation, implicit and 

explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell 

and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq 

approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for 

the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided 

which defines these and other terms. 
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I. INTRODUCTION 

One of the most important techniques used in the computer modeling of physical 

systems, finite differencing represents an essential part of modern theoretical physics. 

Able to generate solutions to systems that are f a  too intricate to be solved analytically, 

this technique has given physicists the ability to model, examine, and better understand 

complex physical situations. From the study of microscopic systems to the modeling of 

the world’s climate, finite-difference programs have opened up an entire field of research 

that has only been possible within the the past 40 years. 

In the following paper we will examine a series of finitedifference programs, gaining a 

clearer understanding of their underlying physical principles and the techniques by which 

these are implemented. It is our intention to represent these physical systems so that they 

will be easily understood both by those who are dealing with them for the first time and 

those familiar with their partial-differential representations. Partial differential equations 

will be used but only as a result of a discussion of the basic principles from which they are 

derived. The mathematics will follow, as it should, from a clear set of physically meaningful 

observations ._ 
It will be essential, however, for the reader to have a clear understanding of the 

FORTRAN computer language in which all programs will be written. While there are many 

finite-difference simulations that are written in other languages, FORTRAN has proved to 

be an efficient, easily understood, and widely accepted language for scientific computing. 

For these reasons we will limit our discussion to simulations written in this language, and 

for reasons of scope we will not discuss the meanings of each of its commands. We assume 

that the reader is already familiar with computers and desires to apply this knowledge 

to the study of physical systems. It is our intention to apply physical principles to the 

creation of computer simulations, not to discuss the syntax of the simulations themselves. 

There are two ways to approach this work. It can be interpreted as a guide to writing 

one’s own finite difference simulations, a type of handbook for creating one’s own codes, or 
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it can be read as a textbook, omitting actual programming by the reader. We hope that 

the reader will adopt the former approach. While it will take more time for the reader to 

create his own simulations, the extra time will prove to be time well spent. 

The reasons for writing one’s own code are twofold. First, the reader who is able to 

structure his own code will be sure to have a full understanding of the concepts involved. 

There is only so much that can be explained about the process; true understanding will 

result only from experience. Secondly, by writing his own programs, the reader gains the 

advantage of being able to examine the results obtained from various initial parameters. 

Only a limited number of results will be presented in this work, thereby leaving the reader 

with a vast set of cases which can be independently investigated. 

As we move through this series of programs, we will examine a broad spectrum of 

physical systems. We will begin with the simulation of heat transfer in one dimension, 

examining various forms of numerical instabilities and explicit and implicit solution 

techniques. Our discussion will then move to compressible fluid flow in one dimension, 

examining both Eulerian and Lagrangian methods of simulation of a number of different 

systems. We will show a method for determining the accuracy of our finite-difference 

representations and use it to examine numerical instabilities. We will discuss the 

simulation of incompressible fluid flow in two dimensions, calculate incompressible fluid 

flow in conjunction with heat, discuss two-dimensional compressible fluid flow, and finally 

implement the equations of turbulence transport in an incompressible code. 

Likewise, our discussion will cover an equally broad set of topics in a range of technical 

fields. We will discuss various physical equations and the systems that they represent, the 

mathematical properties of these equations and how these relate to solving them with a 

computer, and the structuring of the programs themselves. Although we will be dealing 

with these varying subjects, a single underlying thrust must remain clear in our minds. 

We must remember that what we are doing is taking observable physical phenomena and 

4 



translating them into terms which can be dealt with by the computer. The form will be 

greatly changed, but the basic physical principles will always be faithfully represented. 

In as much as we can simulate reality, we can use the computer to make predictions 

about what will occur in a certain set of circumstances. Finite-difference techniques 

can create an artificial laboratory for examining situations which would be impossible 

to observe otherwise, but we must always remain critical of our results. Finitedifferencing 

can be an extremely powerful tool, but only when it is firmly set in a basis of physical 

meaning. In order for a finite-difference code to be successful, we must start from the 

beginning, dealing with simple cases and examining our logic each step of the way. Building 

further insights on what we have done in the past, we will start with the simplest case 

possible: heat transfer in a single dimension. The rest will follow logically. 
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11. ONEDIMENSIONAL HEAT FLOW 

A. Flux and Conservation 

The first system that will be examined in this series of studies is that of heat conduction 

in a single dimension. In this chapter, we will write a program that numerically solves 

a single equation of heat transfer over a onedimensional array. This program can most 

easily be pictured as the simulation of a metal rod that is initially at an even temperature 

and is insulated along its sides. As the program progresses, the simulated rod is heated 

from one end, and the resulting change in temperature along the rod is recorded as output. 

A diagram of this system appears in Fig. 11-1. 

insulation 1 
heat source 

a 
t 

Fig. 11-1 

Each section of this rod is represented by an element in an array that corresponds 

to its position. These elements, called ZONES, record the temperature at finite distances 

along the rod and at finite time intervals, hence the name f inite diflerence. This type of 

representation can be thought of as similar to a motion picture, where each frame exists for 

a small but finite time step. Motion is not fluid as in reality but is instead approximated 

by a series of small changes from one “frame” to the next. 

Our simulation of heat flow in this manner will introduce two basic concepts that are 

essential to the understanding of the underlying principles on which many finitedifference 
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codes are based: FLUX and CONSERVATION. Flux is the amount of something passing 

through a unit area in a unit time. In our current example, the flux that is of interest is 

HEAT FLUX, the transport of heat from one zone to another. But flux is by no means 

limited to only heat. It can represent the movement of mass, momentum, energy, or any 

other value that describes the amount of something that is present in a zone. No matter 

what is being fluxed, the concept remains essentially the same. Flux represents motion 

from one place to another, the rate at which something moves through a given area. 

Conservation means that the total amount of something never changes regardless of 

its motion &om one region to another. If this same concept is viewed in terms of the 

amount of something that exists in a finite region, conservation means that in any region 

of space the change in something equals the amount that goes in minus the amount that 

comes out plus the change of that amount within the region. Once again, this principle 

holds true for many different quantities. Mass, momentum, and energy, while different 

physically, are identical in the fact that they are conserved. 

These two concepts of flux and conservation are critical to the way that our finite 

difference codes are structured. Their implementation and a simple equation obtained 

from experimental observation are all that is necessary to represent the transfer of heat 

numerically. 

B. Numerical Representation 

In order to represent this system in a manner that can be solved computationally, 

we must first examine the structure represented by each zone in our simulated metal rod. 

Looking at an individual zone (also called a CELL), we find a physical system as in Fig. 11-2. 
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\ 
T-rig ht 

Y 
%left 

Fig. 11-2 

Here T-left and T-right represent the temperature along either edge of the zone, and d 

represents the thickness. The heat flux of this system is defined by an equation known as 

Fick's Law. A result of direct experimental observations, Fick's Law is as follows: 

k (zeft - Tright) 

d 
flux of heat = (11-1) 

In this equation, k is called THE COEFFICIENT OF HEAT CONDUCTIVITY and 

is proportional to the rate at which a given material conducts heat across a temperature 

gradient. k is an intrinsic property of the material being represented and must be 

chosen based on the conductive properties of that material. For example, silver, a very 

conductive metal, is represented by a high value of I C ,  around 4 J/s-cm- "C. Wood on the 

other hand, is a poor heat conductor and is consequently associated with a low k value, 

1.3 x J/s.cm. "C. The conductivity of iron is somewhere between these two materials, 

yielding an intermediate value for k, 0.67 J/s-cm- "C. 

Taking this equation as it applies to a single cell, we can now make a generalization 

a s  to how it can be implemented over an array. Given a rod of length D ,  this length can 

be divided into an array of size 5. Each zone will now have a length dx, which is defined 

as D / j .  Such a system is shown in Fig 11-3. 
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Fig. 11-3 

Each zone in this array can now be indexed with a counter j, with zones j - 1 and 

j + 1 being the zones at the left and right respectively. Note that the flux between zones 

will occur at the walls and will therefore occur at points such as j + 1/2 and j - 1/2 in 

the diagram. Note also that the diagram contains both a zone 0 and a zone + 1, existing 

beyond the normal bounds of the rod. These zones are used to implement BOUNDARY 

CONDITIONS, equations that represent the external conditions that affect the values of 

the real zones. The heating source at the left of the pipe is represented by one such 

boundary condition. Temperatures for each cell are defined at the center of the cell, 

existing at positions 1, 2, 3, etc. Density of cells and cross-sectional area between cells are 

defined as p and A respectively. 

These definitions can be used to write an expression for the heat energy contained in 

any given cell: 

Volume = A dx 

Heat energy of cell j = Mass b T’ , 

where b = the specific heat of the material. As 

Mass = Volume density = A dx p , 

(11-2) 

(11-3) 

(11-4) 

the heat energy can also be written as 
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Heat energy of cell j = A dx p b Tj . (11-5) 

We now apply our conservation of energy principle to derive an equation for the 

change in energy. The letter n will be used as a TIME CYCLE COUNTER, an integer 

that represents the number of time cycles that have been calculated. These cycles, also 

called time steps, can be thought of as individual frames in our analogy of the motion 

picture. The time at a cycle n is represented by tn, which is computed as follows: 

tn = n d t  . (11-6) 

In this equation d t  is equal to the time increment per cycle, i.e., the change in time between 

each “frame.” The superscript n in tn notates that the value being expressed occurs at time 

cycle n. It does not indicate t raised to the power n. We will continue to use superscipts 

in this manner, combining them with the subscripts used earlier to represent position. 2’’ 

will therefore be defined as  the temperature in cell j at time step n, and similarly, T’+’ 

will represent the temperature in cell j at the time step n + 1. 

By using this notation and assuming that our heat source is always placed at the left, 

energy conservation can be expressed as 

[Heat Energy];+’ - [Heat Energy]: = 

[Amount in]jn_,,, - [Amount OU~]:+~/~ . 

Referring now to our principle of flux: 

[Amount = [Flux]:-,,, A dt  

and 

[Amount ~ u t ] j n + ~ , ~  = [F~LIX]:+~/, A d t  

(11-7) 

(11-8) 

(11-9) 
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Using Fick’s law to determine flux at j + 1/2 and j - 1/2, and using the equation for heat 

energy of a cell (11-5), we can express Eq. (11-7) as follows: 

(Tjn-Tn ) 
A d t  . (11-10) A p d x  b q+l - A p d x  b Tj” = k (TT-1- Tjn) A d t - k  J + 1  

d x  d x  

This equation can be algebraically manipulated to obtain 

kdt  
~ ? + l -  J T; = <T-1 - Tj” - T + T+,) . (11-11) 

LL is often called the THERMOMETFUC CONDUCTIVITY of a material and is 
bP 

represented by the Greek letter 0. Thus, our conservation equation in final form appears 

as follows: 

(11- 12) 

This equation expresses heat flow in a manner that can be computationally solved. 

Based upon our knowledge of the previous time step, this equation allows us to calculate the 

new temperatures for every zone along the rod. By carrying out this equation repeatedly, 

the overall flow of heat can be observed. 

Based on our discussion so far, it is now possible to begin writing the finite-difference 

code itself; but before this process is begun, let us first examine the nature of our equation. 

Although this equation has been generated from basic principles, it is obtained more 

often through the manipulation of partial differential equations. While not necessary to 

the writing of simple finite-difference codes, these partial-differential equations (P.D.E.’s) 

give scientists greater insight into simple systems and allow for analysis of much more 

complicated physical phenomena. Because these equations are continually being applied 

to finite-difference codes, it is important that they be examined and related to the problem 

at hand. 

C. Part id-Different ial Equations 

For those familiar with partial-differential equations and their use, the following 

discussion of heat flow in analytical terms will serve to provide a different viewpoint into 
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the construction of our finite-difference codes. However, this section is not essential to 

the writing of this code and should, therefore, not deter the reader who is unfamiliar 

with these expressions. Such a reader should try to work through these concepts without 

intimidation; they are merely provided as an alternate method to examining this problem. 

Going back to Eq. (11-11) and distributing the dx2 term among the temperatures, we 

obtain the following equation: 

= o  
Tj"+ -Tj" Tj" -Tj"- 

d x  1 .  - [ dx  dx (11-13) 

By changing our nomenclature to more clearly represent T as a function of position and 

time, we can rewrite T' as T(xj ,  t"), q+l as T(xj + dx, t"), and q y + l  as T(xj, t" + dt). 
Our equation now takes the form 

1 -  T ( x j  + d X , t " ) - T ( x ,  ,t") - T ( x ,  ,t") - T ( x ~  - d x , t n )  T (z j ,  tn + d t )  - T ( x ~ ,  t") d x  
d t  dx 

L 

Using the definition of the derivative of f ( x ) ,  namely 

we take the limit as dt and dx -, 0 and obtain the following terms: 

T ( x ~ ,  tn + d t )  - T ( x ~ ,  t") 82" 
d t  at - - - lim 

dt+O 

T ( x ~  + d ~ ,  t") - T ( x ~ ,  t") 
lim 

dx+0 dx 

T ( x ~  + t") - T ( x ~  - dx,t") 
lim 

dx+O dx 

Thus Eq. (11-14) can be rewritten: 

J 

(11- 14) 

(11-15) 

(11- 16) 

(11- 17) 

(11-18) 
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Once again taking the limit as dx - 0: 

dT  d2T 
at ax2  ’ 
- = g- (11- 19) 

This is the heat-flow equation for a single direction. Starting with this equation, one 

would have been able to work backwards, choosing “finite differences” for each derivative 

and eventually generating Eq. (11-12). Derived from the same principles as our finite- 

difference equations, partial-differential equations provide a different outlook from which 

to approach computation. 

D. Computational Implementation of Equations 

Having derived an expression for heat flow in finite-difference form, the question still 

remains of how it will be computationally implemented. To complete this final stage 

in the writing of our code, three major issues must be examined: boundary conditions, 

redefinition of variables, and the structure of the program itself. 

Our first major issue is the construction of boundary conditions. As was previously 

discussed, boundary conditions represent the external conditions that act to change a 

system. This representation is accomplished by the placing of zones beyond the normal 

boundaries of the array. The values of these FICTITIOUS ZONES or GHOST ZONES are 

chosen in such a way that they accurately express the external environment of the system 

in question. In this chapter, the conditions to be simulated will be a heat source at the 

left and an uninsulated area at the right of the rod. 

While the temperature in each true zone within the rod will be determined by 

successive calculations of Eq. (11-12), the values at the fictitious zones will be calculated to 

represent fixed temperatures at either end of the array. In order to determine these values, 

consider the situation at either end of the array as represented in Fig. 11-4. 
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I -  - - 
I 
I 
I 
I - - -  

T,  5 . . .  

Fig. 11-4 

In this diagram, Tt represents the temperature along the left end of the rod, the 

value that should remain constant throughout the simulation. Although not present in 

the actual array, this constant temperature can be thought of as T 1 / 2 ,  the average of the 

temperatures at zone TI and ghost zone TO. Therefore TL can be expressed as follows: 

To + Tl 
2 TL = 

Solving this equation for TO! 

(11-20) 

(11- 2 1) 

Similarly, if TR is defined as the temperature along the right end of the rod, Tj+l can be 

expressed as  follows: 

(11-22) 

By implementing these two equations, boundary conditions can be expressed for both 

the left and right of the system. Expressions for the other surfaces of the rod will not be 

needed, as they are assumed to be completely insulated, thus reducing the problem to one 

dimension. 

The second major issue in solving of Eq. (11-12) computationally is the redefinition of 

variables. Thus far in this chapter, our equations have been represented in a manner that 

is not accepted by the FORTRAN programming language. Therefore certain modifications 
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must be made in the way that various variables are represented; they must be redefined 

in terms of computationally accepted symbols: 

7 = jbar 

= sig 

T', the temperature at zone j at time cycle n, will now be defined as T(j), an element in 

an array T defined from T(0) to T(jbar +1). Likewise, q+' will be defined as Tnew (j), 

an element in an array defined from Tnew (1) to Tnew (jbar). 

The following new variables will also be defined: 

TO the intial temperature of the rod 

stime E the time at which the program ceases to run 

ptime the time between successive displayings of the 

values of the zones in the array 

pt = a counter for ptime 

st = a counter for stime 

Our finite-difference code will be divided into five sections, each with a clearly defined 

task. The first of these sections is the initialization procedure that dimensions the arrays 

and assigns initial values to all variables. This initialization is done in a subroutine that 

is called only once at the beginning of the program. 

The second section of our code sets up a loop that repeats each time cycle. This section 

determines if the time counters pt and st have reached ptime and stime respectively and 

then increments the counters. If pt has reached ptime, it is reset to zero, and the current 

array of zones is sent to the output subroutine. If st reaches stime, the program terminates. 

The third major section is the definition of boundary conditions, which occurs after 

the test for ptime and stime and before the actual computation of the next time cycle. In 

our particular program, this section should carry out Eq. (11-21) and Eq. (11-22) on the 

array T ,  updating values for the ghost zones at each time cycle. 
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The fourth section is the portion of the program that implements Eq. (11-12), which 

also occurs within the time-counting loop. This implementation is made up of two loops, 

the first of which assigns Tnew according to this equation, and the second of which transfers 

the values of Tnew back into T.  The code for this section is as follows: 

do 100 j =1, jbar 

Tnew(j) = T(j) + sig*dt/dx**2 * (T(j+l) + T(j-l)-2*T(j)) 

100 continue 

do 200 j=1, jbar 

T(j) = Tnew(j) 

200 continue 

This two-loop structure is essential to the successful computation of T at the new 

time step. If one were to forego the computation of Tnew and directly compute T, the 

temperature terms at the right hand of the equation would not exist at the same time cycle. 

While T(j+l) and T(j) would still be at time n, T(j-l), having already been computed in 

the previous iteration of this do loop, would exist at time n + 1. By creating a second 

array and moving these values into T after they are all computed, we are able to avoid 

this problem. 

The final section in our code is the output subroutine, which occurs when pt=ptime. 

This procedure could contain various graphics routines, write results to an output file, or 

simply display the various array values on the screen. A diagram of these sections and 

their interactions appears in Fig. 11-5. 
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el 1. Initial Conditions 

13. Boundary Conditions I 

I I 

Fig. 11-5 

E. Programming and Results 

We have now reached a point where the reader should be able to write his own finite- 

difference code for heat transfer. In this work a limited series of examples are examined in 

order to demonstrate the output of our code. 

Figures 11-6 through 11-10 below show the results of a simulation of an insulated 

rod that is originally at O"C, with a fixed temperature at the left (T') of 400"C, fixed 

temperature at the right (TR) of O'C, a thermometric conductivity (a) of 1.0 m2 per sec, 

a zone length (dz) of one meter, a j of 50, and a time step ( d t )  of 0.1 seconds. Results are 

shown at 10, 50, 100, 250, and 1000 seconds. 
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i., 
Temperatures along rod 
sigma = 1.0 dx= 1.0 d t  = 0.1 time = 10 

Distance along rod (m) 

Figure 11-6 

Temperatures along rod 
sigma = 1.0 dx = 1.0 dt = 0.1 time = 50 

Distance along rod (m) 

Figure 11-7 

- Temperatures along rod 
07, sigma = 1.0 dx = 1.0 d t  = 0.1 time = 100 

Distance along rod (m) 

Figure 11-8 
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Temperatures along rod 
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sigma = 1.0 dx= 0.1 dt = 1.0 time = 500 

Q) 
Fc 

Q O  Et d -  
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52 

time = 500 

Distance along rod (m) 

Figure 11-9 

0 Temperatures along rod 
sigma = 1.0 dx = 0.1 dt = 1.0 time = 1000 

I 

- 
" 

a 
R 
- -  
a 
1 I I I 1 
a .o @=$ IE.0 n k  60.D 

Distance along rod (m) 

Figure 11-10 

Notice how the zone temperatures approach a straight line a s  the simulation progresses. 

Such a line is the final steady-state solution of this system, regardless of thermometric 

conductivity. Solutions at earlier time steps can be approximated using Eq. (111-55), which 

is derived at the end of Chapter 111. 
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In the next three graphs, the effects of changes in time step are shown in relation to a 

simulation which is otherwise identical to the one above. Figure 11-11 shows a temperature 

curve for a system at a time of 100 seconds with a time step of 0.495, just under 1/2. 

Temperatures along rod 
sigma = 1.0 dx = 1.0 dt = 0.495 time = 100 

I 
0 .D 1 2 1  I3 a 376 

Distance along rod (m) 

Figure 11-11 

This figure is almost identical to Fig. 11-8, indicating that there is little difference 

between the results obtained with a time step of 0.1 and the results obtained with a time 

step of 0.495. Results are quite different, however, when a time step of 0.5 is used, as in 

Fig. 11-12. 

0 
0 Temperatures along rod 

sigma = 1.0 dx = 1.0 dt = 0.5 time = 100 

0 

1 % )  Z3.D SI. I sa .D 
- 

QD 

0 
0 Temperatures along rod 

sigma = 1.0 dx = 1.0 dt = 0.5 time = 100 

0 

1 % )  Z3.D SI. I sa .D 
- 

QD 

Distance along rod (m) 

Figure 11-12 
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The stair-step type temperatures that can be seen in this graph are a result of a 

numerical instability, This instability becomes even more violent when the time step is 

further increased to 0.505, as in Fig. 11-13. 

Temperatures along rod 
sigma = 1.0 dx=  1.0 dt  = 0.505 time = 100 P =1 I 

Distance along rod (m) 

Figure 11-13 

Notice that in this figure the highest temperatures are much greater than 400"C, whereas 

the lowest temperatures are below -250°C. Obviously, this does not accurately represent 

the transfer of heat down the rod. 

The numerical instability seen in Figs. 11-12 and 11-13 arises whenever the quantity 

$ is greater than 1/2. The presence of this instability means that the more accurately 

one wishes to resolve a set of circumstances, the shorter the time step that must be chosen. 

This problem highly limits the sorts of cases that can be simulated, yet there is a method 

by which it can be overcome. The following chapter examines this numerical instability 

and discusses the use of an implicit method of solution-a method that increases the speed, 

accuracy, and applicability of our finitedifference codes. 
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111. 

A. 

NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS 

A Graphical Explanation of the Diffusional Stability Condition 

In the cases presented at the end of the last chapter, we discovered that our finite- 

difference code is numerically unstable when the value of 2 exceeds 1/2. This constraint 

is known as the diffusional stability condition, and it is one of two important conditions 

that we will examine in our series of finite-difference codes. 

Consider the simplest case possible for our simulation: that of a rod at a constant 

temperature, To, with this same temperature at either end. Now consider the case in which 

this system of constant temperatures is perturbed by slightly increasing the temperatures 

of the odd-numbered zones by an amount E and slightly decreasing the temperatures of 

the even-numbered zones by the same amount. The result is a system such as depicted in 

Fig. 111-1. 

>I 5 . .  
I 2 3 4 

Zone 

Fig. 111-1 

Let us now chose an odd numbered zone, j ,  and examine the calculation of its 

temperature at each time step. We begin with 

(11- 12) 
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and substitute our new definition of T to obtain 

adt T?+l = To + E + 2 [To - E + To - E - 2(To + E ) ]  7 
3 dx 

which can be reduced to 

or 

Tn+l=To+E 3 [ 1-- - 

(111-1) 

(111-2) 

(111-3) 

If a constant 5 is defined such that 
4adt C E -  
dx2 ' 

our equation becomes 

Zy+1 = To + E[1  - 51 . (111-4) 

Note that 5 in this equation is made up of all positive components; therefore, 5 > 0 and 

(1 - 5) < 1 in all circumstances. 

These constraints leave us with four cases to examine, the first of which occurs when 

0 < 5 < 1. In this case, 1 - 5 is a fraction between 0 and 1. q+' is therefore computed 

as TO + E (fraction), yielding a value closer to TO than the previous time step. Subsequent 

iterations of this equation generate a series of temperatures such as shown in Fig. 111-2. 

c =  113 

I I I I I 1 1 I 

1 ' 2 ' 3 1 4 1 5 ' 6 ' 7  I . . .  

Time Step 

Fig. 111-2 
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In this case, the temperature converges towards To, moving towards the array of constant 

temperatures that defines a correct solution. 

In our second case < = 1, leaving us with the equation 2"''' = To. The graph of this 

case converges immediately, as illustrated in Fig. 111-3. 

Time Step 

Fig. 111-3 

Our third curve is similar to the first and occurs when 1 < E < 2. When this is true, 

1 - is again a fraction, but this time it is a number between 0 and -1. The result is a 

set of values which alternate above and below T' but converge toward that value as shown 

in Fig. 111-4. 

r, 

t =  1.5 

0 
I I I 

I I I I 
1 2 3 4 5 . . .  

Time Step 

Fig. 111-4 
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A corollary to this case occurs when < = 2. For this value the graph oscillates but 

does not converge, as in Fig. 111-5. This case, while not convergent, is still considered to 

represent the bounds of numerical instability. 

6 = 2.0 

0 0 0 

1 2 3 4 5 . .  . 
I I I I I 

Time Step 

Fig. 111-5 

Our fourth and final case occurs as soon as this bound is crossed, when < > 2. In this 

set of circumstances 1 - < < -1, yielding values of Tn+l that not only oscillate but diverge 

from the correct solution. The graph of temperatures appears as in Fig. 111-6, with values 

diverging until the program is terminated. 

0 

0 5 = 2.5 

*& To 
a 

0 
I 1 I I I 

I I I 
1 I  2 l  3 '  4 5 .. . 

Time Step 

Fig. 111-6 
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In order to avoid this condition, as well as the stable but nonconverging state pictured 

in Fig. 111-5, we must choose < such that [ < 2. Referring to our definition of [ as m, 
we obtain 

40dt  

4 a d t  
d x 2  < 2 ,  

which is the diffusional stability condition 

a d t  1 
d x 2  2 < - .  - 

(111-5) 

(111-6) 

We have therefore demonstrated graphically that this condition must be met for a solution 

to converge. 

B. A Mathematical Derivation of the Diffusional Stability Condition 

Once again, we will turn to a mathematical explanation to reinforce an argument that 

has been made graphically. This section, like section 11-C, is not essential to the writing 

of our codes; it is simply another method of arriving at the diffusional stability condition 

and better explaining the manner in which it can be overcome. Again, one should follow 

as closely as possible, gaining familiarity with the application of various mathematical 

methods towards this problem. 

We will begin with the heat-flow equation as expressed in Eq. (11-12), this time 

substituting our definition for 5: 

Let us examine the behavior of T’, with the following trial solution: 

= ~ , i k j d x  i w n d t  e 3 

(111-7) 

(111-8) 

Here T’, represents T at a time step n and zone j, whereas ei k j  d z  and ei dt  represent e 

raised to i k j d x  and i zu n d t  respectively, where i is the imaginary number. If r is defined 

as 
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Eq. 111-8 becomes 

From this equation, we see that r must be between 1 and -1 for Ty to converge. 

If r > 1, the solution will diverge monotonically, moving farther and farther towards 

either positive or negative infinity. If r < -1, the solution will diverge in an oscillatory 

manner, alternating between positive and negative values but always moving away from 

convergence. 

Keeping these restrictions on r in mind, let us now use our test definition of Ty to 

substitute for temperature terms in Eq. (111-7): 

Dividing both sides by Aei ‘ jdXrn  gives 

r = l + -  E [e i kdx  + e - i kdx  -23 . 4 (111-11) 

Using the identity eis = cos 8 + i sin 8 we can rewrite this equation as 

r = 1 + - E [2coskdz - 21 (111- 12) 4 

or 

E r = l - - [ l - c o s k d z ]  . 
2 (111-13) 

Consider the extreme cases for the coskdx term, namely coskdx = +1 and -1. If 

coskdz = +1, then Eq. (111-13) reduces to r = 1, a valid statement according to the 

restrictions that we have placed on r. This case poses no problems. 

Taking the other extreme, cos kdx = -1, we are left with 

r = l - E .  (111-14) 
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Because < is always positive, T can never exceed 1 in this case. It can, however, be less 

than -1, a problem which places the following condition on <: 

- 1 < 1 - c  

or 

< < 2 .  

(111- 15) 

(111- 16) 

Using our definition of c ,  we find that Eq. (111-16) is simply another statement of the 

diffusional stability condition: 
adt 1 < -  dx2 2 
- (111- 17) 

Our analytical method arrives at precisely the same result as the pictorial analysis; the 

diffusional stability condition must be met in order to ensure numerical stability. 

C. Implicit Calculations 

We have now derived the diffusional stability condition mathematically as well as 

graphically and have demonstrated that it is essential to the numerical solving of Eq. (II- 

12). It is possible, however, to solve the heat-flow equation numerically without meeting 

this condition, by expressing the < terms of the heat-flow equation at time n + 1 rather 

than at time n. In this method, heat flow is not represented by Eq. (11-12)) but instead 

by the following: 

(111-18) 

Let us now examine this equation mathematically as we did in Section B. Inserting a 

similar trial solution and dividing by Aei ICj dzrn, we obtain 

or 

t 
4 

7- = 1 + - [2rcoskdx - 27.1 ) 
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which can be algebraically manipulated to obtain 

1 r =  
1 + 5 (1 - cos kdx) * 

(111- 2 1 ) 

Examining the upper and lower limits for cos kdx, we find that 

r = l  (111-22) 

or 
1 (111-23) 

Because [ is always positive, r will be between 0 and 1 in all cases, indicating that 

our solution will be numerically stable regardless of the value of g. Equation (111-18) 

will therefore remain stable at any resolution and time step; all that remains is to solve it 

numerically. 

Equation (111-18) represents an IMPLICIT METHOD of calculation. In this method, 

values at the new time cycle are not directly calculated from old values as they were in 

the EXPLICIT METHOD used in the previous chapter. They are instead calculated using 

an iterative process that begins with a trial solution and modifies that solution with each 

iteration until it has converged to within a specified value. In our program this iteration 

will be done using Newton’s Method. 

Newton’s Method is an iterative process that uses successive approximations to solve 

an equation in the form f (2) = 0. In Newton’s method a trial value for x1 is first chosen, 

then the following equation is applied iteratively: 

(111-24) 

This equation generates successive approximations for x, each more accurate than the one 

before it. When 2 has converged to within a specified range, xn is then taken as the final 

solution. 
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We can better understand how this method arrives at a solution by examining an 

example equation, f ( x )  = x2 - 2. Choosing x1 = 2 as a trial value, we will let the solution 

converge to within three decimal places. 

2 2, - 2 
X n + l  = X n  - - 9, 

21 = 2.000 

2 2  = 1.500 

2 3  = 1.466 

24 = 1.414 

25 = 1.414 

A plot of these values along the graph of the equation appears in Fig. 111-7. 

2 
I 

X 

Fig. 111-7 

(111-25) 

1 

X .  

This figure illustrates how one solution is used to obtain the next. The tangent is 

used to approximate the graph of f ( x n )  at the value xn, and xn+l is given the value of 
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x for which the tangent crosses the x-axis. This value is then substituted for x and the 

process is repeated until it has converged. 

Let us now apply this process to Eq. (111-18). Expressing this equation as a function 

of T’+’, we obtain 

f (q?+1) = T’t-1 - ly - 

Taking now the derivative with respect to T+’, 3 we find that 

2adt 
dx2 

f’ (q+1) = 1 + - - 

Using both of these definitions in Eq. (111-24), we are left with the final 

f ( q % g u e s s )  q+l (new guess) = T;+l (old guess) - ( 2adt I) 
1 + 2 F  

By using this formula iteratively, we can now compute values for q+’ 
a dt 
dx2 
- 

D. Computational Implementation of the Implicit Method 

Now that we have developed an implicit method for use in solving 

(111-26) 

(111-27) 

formula: 

(111-28) 

for any values of 

the heat-transfer 

equation, we can implement this method on the computer. We will do this by making 

small modifications to the heat-transfer code that has already been written. 

We begin by defining a constant beta that is set during the initialization procedure. 

Beta is defined as 
1 

and is used to avoid successive calculation of the denominator in Eq. (111-28) during 

iterations of Newton’s method. Also in this procedure, we define a constant ftest that 

is equal to the margin of error to which our iterative procedure will converge. Typically 

ftest has a value of approximately 0.001 times some maximum value of T in the problem. 

Besides these two definitions in the initialization procedure, most of the major 

modifications to the program occur in the computation section (referred to as Section 4 
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in the previous chapter). This section in its explicit form should be removed and replaced 

with an implicit section of code. 

This implicit section should consist of a loop that makes the initial guesses for the 

temperatures at time n + 1 and a loop that iterates until the values of Tn+’ have converged 

to within ftest. The first loop is simply a do loop that defines the initial guesses for the 

new temperatures as the temperatures at the old time step. Thus, 

Tnew(j) = T(j) . (111-29) 

This loop is then followed by an until loop that is constructed in the following manner. 

At the beginning of each iteration, a value fmax is set at zero. After this statement, the 

program moves into another loop that calculates f ( T )  along every point along the rod 

and uses these values to calculate the next guess for the new temperatures. Also in this 

loop, the largest absolute value for f(T) is stored in the variable fmax. After this loop, 

the program makes a check to see if fmax is less than ftest. If ftest is larger, the until loop 

ends; if fmax is larger, the loop is repeated. The code for this loop should be similar to 

the following: 

100 fmax = 0. 

do 200 j=  1,jmax 

f = Tnew(j) - T(j) - (sig*dt/(dx*dx)) * (Tnew(j+l)+ T (j-1) - 2*T(j)) 

fmax = amaxl (abs(f),fmax) 

Tnew(j) = Tnew(j) - f * beta 

200 continue 

if (fmax.gt.ftest) then goto 100 

Notice that all the T terms on the right of the equation that sets f are actually 

temperature values at the present implicit iteration. T’s and Tnew’s are mixed due to the 

structure of the loop. Optionally, a counter for the number of iterations of the until loop 

can be added, terminating this iterative process when a maximum number of iterations is 

reached, regardless of the values of fmax. 
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When this loop has finally terminated, the T array is redefined with the values from 

the Tnew array, and the program moves on to the next time step. All other sections 

remain in the same form as in our original program. No other modifications are necessary 

to create a fully-implicit version of our one-dimensional heat-transfer code. 

Start I 
1. Initial Conditions 

1 3. Boundary Conditions 1 

fmax-= ftest 

Fig. 111-8 
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By using the implicit code with the same set of parameters as were present in Fig. II- 

12 (TO = O'C, TI = 4OO0C, T, = O'C, 0 = 1m2/sec, dx = 1 m, 3 = 50, d t  = 0.5 sec, time 

= 100 sec: e = 0.5), the results shown in Fig. 111-9 are obtained. 

dx= 1.0 dt  = 0.5 time = 100 
Temperatures along rod 

0 

0 -  I 
BD la .I a;o W L  I D  .D 

Distance along rod (m) 

Fig. 111-9 

This figure helps to illustrate the numerical stability of this method. The system 

remains stable at a time step of 0.505 ($ = 0.505), as indicated in Fig. 111-10. 

Z Temperatures along rod 
=\ sigma = 1.0 dx = 1.0 dt = 0.505 time = 100 

0 
I I 1 
125 S i b  81 E Mb =-I a0 

Distance along rod (m) 

Fig. 111-10 

Even at a time step of 10 sec, where is equal to 10 and only 10 time cycles are 

computed up to time 100, the system remains numerically stable. The results in Fig. 111-11 
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below appear almost identical to those calculated explicitly in Fig. 11-11, yet the time step 

used is over twenty times as large. 

0 Temperatures along rod 
sigma = 1.0 dx = 0.1 dt = 10 time = 100 

Distance along rod (m) 

Fig. 111-11 

We see through example that implicit methods are able to generate results for sets of 

parameters that are numerically unstable when calculated explicitly. This technique will 

prove essential in later simulations, preventing the first of two major numerical instabilities 

that we will examine in our series of exercises. 

E. Analytic Solution of the Heat-Flow Equation 

In this section, we will be manipulating the heat-flow equation in order to generate 

an analytic solution that can be used to check the validity of our computational results. 

Once again, following the manipulation of this partial-differential equation is not essential 

to making use of the derived solution. 

We begin with Eq. (11-19), the one-dimensional heat-flow equation in partial- 

differential form 
dT d2T 
at dX2 
- =(J- (11- 19) 

and make the assumption that T is a function of the single dimensionless quantity that 

includes 0, x, and t: 

(111-30) T = T(J) 
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where 

By making this definition, 

length of the rod does not 

we are assuming that the rod is of infinite length, so that the 

enter into these parameters. This assumption is made because 

the derivation of a solution for a finite rod is a much more involved process than a solution 

for the infinite case. For our purposes an analytic solution to the infinite rod case will 

prove to be sufficient. 

Using Eq. (111-30), we can obtain expressions for its partial-derivatives. Differentiating 

with respect to t we obtain 

Differentiating to obtain the second derivative with respect to x gives us 

and 

Equations (111-31) and (111-33) are substituted into Eq. (11-19) to obtain 

or ---=-( [ d T  d d T  ) *  
2 d< d< 

If we define a variable y such that 
d T  
d e  

Y E - - )  

(111-31) 

(111-32) 

(111-33) 

(111-34) 

(111-35) 

Eq. (111-35) becomes 
< dY 
2 dJ --Y = - (111-36) 
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or 

which can be integrated to obtain 

c2 

where C is a constant. 

Exponentiating both sides of this equation gives us: 

or 
2 e 4 = y K 1 ,  

(111-37) 

(111-38) 

(111- 3 9) 

(111-40) 

where K1 is a constant. We then use our definition of y and multiply both sides of the 

equation by d e  to obtain 

e$d< = K1dT. 

This can be integrated to obtain 

(111-41) 

(111-42) 
E 1  

where K2 is another constant. If we choose 41 to represent at a distance of zero from the 

end of the rod this equation becomes 

2 - 

(111-43) 
0 

which can be simplified by defining a variable z such that 
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Equation (111-43) then becomes 

(111-44) 

To determine the values K1 and K2, we examine two test cases. In the case where z 

is 0: the temperature is equal to that of the wall at the left 

e - z2dz  = K ~ T L  + K2 
0 

or 

K2 = - ( K ~ T L ) .  

end of the rod. We then have: 

(111-45) 

(111-46) 

In the case where we are at an infinite distance from the heat source at one end of the rod, 

the temperature is equal to the initial temperature specified for the rod: 

e -Z2dz  = KIT0 + K2 , 
0 

which reduces to 

or 

A- KIT0 = K2.  

Setting Eqs. (111-46) and (111-49) equal to each other, we obtain 

- K ~ T L  = fi- KIT0 

or 

K2 can then be obtain by substituting into Eq. (111-46): 

(111-47) 

(111-48) 

(111-49) 

(111-50) 

(111-51) 

(111-52) 
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or 

Substituting both of these values into Eq. (111-44) we obtain 

z - 

2 $e-’ldz = (T - TL) 
0 

5% 

T = TL + (To - TL) (L) / eUZ2dz .  
0 

fi 

(111-53) 

(111-54) 

in this equation is a form of the PROBABILITY INTEGRAL, also 

cilled the ERROR FUNCTION. This term is not integrable in terms of simple polynomials, 

but it can be “solved” by defining 

n - 
er f (a )  = -/e-”’dz,  2 

0 
fi 

where erf  (a)  can be determined as in the following table. 

a 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 

erf (4 
0.0000 
0.0564 
0.1125 
0.1680 
0.2227 
0.2763 
0.3286 
0.3794 
0.4283 
0.4755 
0.5205 
0.5633 
0.6039 
0.6420 
0.6778 
0.7112 
0.7421 

a 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

er f  (4 
0.7969 
0.8427 
0.8801 
0.9103 
0.9340 
0.9523 
0.9661 
0.9764 
0.9838 
0.9891 
0.9928 
0.9953 
0.9970 
0.9981 
0.9987 
0.9994 
0.9996 
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Our final solution to the heat-flow equation is then 

(a - T = TL + (To - T L )  erf (111-55) 

This equation can be used to check the accuracy of our numerical results. It represents 

the infinite rod case in which the temperature wave is not affected by the conditions at 

the right end of the rod. At early time steps, the temperatures in our finite-rod simulation 

should approximate those generated by this equation. Solutions at late time steps, as we 

saw in Chapter 11, should approach a straight line. By examining the results generated 

by our code in both these circumstances, we can verify the validity of our finite-difference 

calculations. 
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IV. LAGRANGIAN FLUID DYNAMICS 

A. Fluid Flow and Lagrangian Methods 

Up to this point our finitedifference codes have dealt strictly with the equation of heat 

transfer [Eq. (11-19)], but heat flow is only one of many phenomena that can be modeled 

using the finitedifference method. In the following several chapters, we will be looking 

at another physical phenomenon that can be simulated in this manner: the motion of 

FLUIDS. 

For our purposes, we will define a fluid as anything that is infinitely deformable or 

malleable. This means that, while a Auid may resist moving from one shape to another, 

it resists the same amount in all directions and in all shapes. Fluids can be either 

COMPRESSIBLE or INCOMPRESSIBLE. An incompressible fluid is one that does not 

change its density much when pressure is applied to it, meaning that the fluid is moving 

at a velocity much less than its sound speed. A compressible fluid is one that undergoes a 

large change in its density as pressure is applied to it, meaning that the fluid is moving at 

a speed that is comparable to its sound speed. We will be dealing with compressible fluids 

in this chapter. 

Our simulation will be of a system that can be reduced to one dimension: a piston 

moving in a long cylinder that is filled with gas. The compression of gas in this manner 

can by dealt with in one of two ways: through LAGFUNGIAN or EULERTAN methods. 

In an Eulerian code, zones remain fixed in space throughout the simulation. Fluids 

move in and out of the zone at various rates, causing the mass contained in a particulm 

zone to change as the simulation progresses. All physical quantities are fluxed between 

cells, but the position of the cells at all time steps remains the same. We will examine this 

method in Chapter V. 

Another method for simulating this situation is the Lagrangian technique. In a 

Lagrangian code the positions of zones vary between each time step. As fluids are 

compressed and decompressed, the zones move accordingly, maintaining an equal mass 

41 



throughout the simulation. In a Lagrangian calculation, the energy, momentum, and 

position of a given zone vary from time step to time step; only the mass contained by the 

zone is held fixed. The Lagrangian technique is the one that is used in this chapter. 

B. Description of Equations Used in Lagrangian Fluid Flow 

In order to derive the equations that are used in a one-dimensional Lagrangian code, 

we must first define a group of variables and coordinates similar to those used in our f is t  

two simulations. We again have a one-dimensional system of zones, each zone representing 

a certain section of the system being simulated. The system appears as in Fig. 11-3, with 

a series of j true zones and ghost zones appearing at 0 and 3 + 1 

0 1 2  j-1 j j + l  :+i 

Figure IV-I 

The variables that will be applied to this system, however, are quite different from 

those of the heat-transfer problem. In the fluid-flow case there is no longer a single array 

of temperatures, but instead a group of arrays that represent position, pressure, velocity, 

density, internal energy, and viscous pressure. The definition of these variables over a zone 

j is shown in Fig. IV-2. 

In this figure: 
zj+1/2 = position of cell wall to the right of zone j 

ujS1/2 G velocity at cell wall to the right of zone j 

pj pressure of zone j 

Ij = internal energy per unit mass of zone j 

qj zs viscous pressure of zone j 

p density of zone j 
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Figure IV-2 

Note that u and x are located at the walls of the cells while the rest of the variables are 

located at the centers. These positions will be important in determining the relationship 

among these various quantities. 

With our variables defined as in Fig. IV-2, the equations that relate them to one 

another can be derived. Consider the relationship between x and u: x is the array of wall 

positions and u is the array of the time rate of change of those wall positions, i.e., velocity. 

From these definitions, we see that 

Finite-differencing this equation gives us 

= u .  dX 
at 
- 

n+l 
x3.+l/2 - x7+1/2 

dt = u7+1/2 7 

which can be rewritten as an equation for position in terms of velocity: 

(IV-1) 

(IV-2) 

(IV-3) 

This is the first important equation of our Lagrangian fluid flow code. 

The next equation follows from Newton’s second law of motion, (Force = Mass x 

Acceleration), and the definition of pressure, (pressure = e). In our code we define a 
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momentum 

Figure IV-3 

momentum cell whose center lies at the boundary between two normal cells and define F' 

and F'+l as the force at the right and the left of the j momentum cell. A momentum cell 

is depicted in Fig. IV-3. 

By the definition of pressure, Fj and Fj+l are rewritten in terms of variables defined 

in Fig. IV-2: 

(IV-4) 

(IV-5) 

where A is the surface area of a cell wall. Note that here we use the sum of the physical 

pressure and the viscous pressure, an additional pressure that is necessary to achieve 

numerical stability. The viscous pressure will be discussed in more detail in section C. 

Using Newton's second law and noting that acceleration is the time rate of change of 

velocity, we obtain 

(IV-6) 

where Fj+1/2 is equal to the net force at the cell wall j + 1/2. In the case where there are 

no outside forces such as gravity in the x-direction, the net force at j + 1/2 is equal to the 
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force pushing the momentum cell from the left (Fj) minus the force by which it pushes the 

next momentum cell on the right (Fj+l): 

Combining Eq. (IV-6) and Eq. (IV-7) g’ ives us 

3+1/2 - Ujn+l/2 Fj - Fj+l = m 

or, by substituting for Fj and Fj+l, 

(IV-7) 

(IV-8) 

(IV-9) 

Defining the quantity M as 2 and solving for u;::~~, we are left with the expression 

n+l - dt 
?+l/2 - u7+1/2 + M (P? + qy - pj”+l - Qjn+l) (IV-10) 

which gives change in u in terms of variables used in Fig. IV-2. 

An expression for p can be obtained by again using our definition of M .  Because 

density is equal to M divided by the width of a zone, it follows that 

A4 

3+1/2 3-1/2 
pj” = 

X? - xn 7 (IV- 1 1) 

which is the Lagrangian density equation. 

An expression for I ,  the internal energy per unit mass of a cell, can be derived by 

appealing to the definition of internal energy. I can be defined as the difference between 

the total energy per unit mass and the kinetic energy per unit mass contained in a cell, 

which is the same as the heat energy per unit mass. We can therefore use the first law of 

thermodynamics, 

AI = AE = Q - pAV , (IV- 12) 

where AE is the change in heat energy, Q is the heat received from both conduction from 

an outside source (which will not be important in this simulation) and dissipation of mean 

flow kinetic energy, p is the pressure, and AV is the change in volume. 
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We now make use of the variable q, which we called the viscous pressure earlier in 

this chapter. One way of thinking of this pressure is as -&/AV, or the increase in heat 

energy over the compressive (or negative) change in volume. Using q, Eq. (IV-12) can be 

written as 

AI = - (q + p ) A V  . (IV-13) 

Because the total internal energy is equal to m x I ,  this equation can be rewritten in the 

following differential form: 

In finite-difference form, Eq. (IV-14) becomes 

(IV-14) 

(IV- 15) 

dX,+l 2 Using our definition of M as 2 and uj+l/2 as +, we solve for IT+' and obtain the 

Lagrangian internal energy equation in finitedifference form: 

I?+l = I; + - dt  (4; + p y )  (u7-1/2 - u3"+1/2) . (IV-16) 
3 M 

To obtain an equation for pressure ( p ) ,  we employ the ideal gas law, namely 

p V  = nRT , (IV- 17) 

where p is the pressure, V is volume, n the number of moles, T the temperature, and R is 

the universal gas constant. In SI units R = 8.3145 J/"K mol 

In an ideal gas it can be shown that when Cp and C, are the molar heat capacities at 

constant pressure and constant volume, 

Cp - C, = R .  

Combining this equation with Eq. (IV-17) and solving for p gives 
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which can be rewritten as 

Because Cv is the molar specific heat and I is the internal energy per unit mass, 

nCvT = mI  . 

By use of this equation, Eq. (IV-20) becomes 

(IV-20) 

(IV-21) 

(IV-22) 

We now define a constant y such that 

This variable is called the POLYTROPIC GAS CONSTANT. This constant is always 

greater than one and represents the ratio of specific heats and is a property of the gas 

being simulated. Some typical values of y are 

air, y = 1.4 

helium, y = 1.66 

y and p are used in Eq. (IV-22) to obtain the Lagrangian finitedifference equation for 

pressure: 

p j  n -  - (y - 1)pYIY . (IV-23) 

This equation, also known as the POLYTROPIC EQUATION OF STATE, is used to 

calculate values of p at each time step. 

With pressure defined, let us take a closer look at q, called the viscous pressure. This 

variable accounts for loss of kinetic energy in addition to what is used to compress the 
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gas. It serves as a means by which kinetic energy is dissipated in irreversible processes in 

the fluid such as the creation of heat through friction. The equation for artificial viscous 

pressure appears in the following form: 

if positive 

or if negative qy = 0 , (IV-24) 

where qo is a constant between 0.1 and 0.25, and c is a characteristic velocity of the system. 

This equation will not be derived in this work, but it is important to understand why 

it appears in this form. The irreversible processes that are modeled through the use of the q 

equation occur when there is a rapid change in the volume occupied by a gas in a system. In 

our system this change occurs when there is a large differential between the velocities at the 

left and right of a given cell. Hence we make q proportional to uy-1,2 - u : + ~ / ~ ,  indicating 

a large amount of kinetic energy dissipated when there is a large velocity differential and a 

small amount dissipated when there is a lesser difference in velocities. Because dissipated 

kinetic energy is never returned to the system, this term is said to have a value of zero 

when its computed value is negative. 

In order to be dimensionally correct ujR-112 - ujn+112 is multiplied by the density of 

the zone and by c, which is called the characteristic velocity. As c’s purpose is simply to 

make our equation dimensionally correct, we have some leeway in choosing this velocity. 

Typically it is chosen in one of three ways. The simplest method is to define c as equal to 

the value of some other major velocity in the simulation. In our simulation this would be 

the velocity of the piston that compresses the gas in the cylinder. Another way that this 

velocity can be defined is by using the sound speed of the fluid in question. Namely 

.=E, (IV-25) 

which can be rewritten using our equation for pressure as 

c = &y(y - q r .  
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The third way in which c can be determined is by combining these two approaches by 

adding the sound speed to a prevalent velocity in the problem. In this case 

c = piston speed + ~ T ( T  - 1)T . (IV-27) 

This third method is the one used in the model presented in this work. 

In this section transport equations for position, velocity, density, internal energy, 

pressure, and viscous pressure were derived-all the equations necessary to construct a one- 

dimensional compressible fluid-flow simulation. The equations of fluid flow, particularly 

those of density (or continuity), internal energy, and velocity (or momentum), are often 

called the NAVIER-STOKES EQUATIONS. This is a general term that can be used 

to represent any set of fluid-flow equations in 1, 2, or 3 dimensions. Having derived 

these equations, we are ready to move our discussion to the construction of the computer 

code itself; but before we take this step, let us first take a closer look at the artificial 

viscous pressure. Its relationship with the diffusion equation will help us derive a stability 

requirement that will be important in this simulation. 

C. Viscous Pressure and Diffusion 

Let us examine the effect of q on the momentum equation [Eq. (IV-lo)]. Substituting 

our definition of q [Eq. (IV-24)] into the momentum equation, while dropping the p's and 

the subscripts on p, gives us 

which can be rewritten 

This equation is in the form of a diffusion equation [Eq. (III-18)] where 

(JY-29) 

(IV-30) 

We can use our definition of p 
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m M  p = - - -  - 
A d x  dx ’ 

to rewrite Eq. (IV-30) as 

Using the diffusional stability condition on a [Eq. (111-6)], 

we find that 

(IV-31) 

(IV-32) 

(111-6) 

(IV-33) q o c d t  1 
d x  2 < - .  

This important stability requirement arises from the parallelism between the effect 

of q on the momentum equation and the equation of heat diffusion. It is the first of two 

major stability conditions that are found in this code. 

The second condition, the COURANT STABILITY CONDITION, is a stability 

condition that occurs as a result of a numerical instability that will be discussed in 

Chapter VI. Its presence in a Lagrangian simulation can be explained by using a simple 

example. 

Consider the Fig. IV-4, where the fluid at the left wall of a zone of length d x  is moving 

to the right with velocity v, while the fluid at the right wall is stationary. 

t dx 

Figure IV-4 

In this case, we see that for a given time step ( d t ) ,  the left wall will move toward 

the right wall a distance v dt .  In order for our Lagrangian simulation to remain valid, the 

50 



left wall cannot be allowed to move past the right wall. Mathematically the system must 

satisfy the following equation: 

v d t  < d x .  

Because dx is always positive, this equation can also be written as 

d t  
dx v - < l .  

(IV-34) 

(IV-35) 

Since cross-overs can also occur when a right wall moves leftward past a left wall, our final 

stability condition is 
dt 
dx Ivl - < 1 . (IV-36) 

In our code, v is equal to the maximum velocity in the system IuI + c. Equation (IV-36) 

is the Courant stability condition. It will be discussed in greater detail later on in this 

work. In this chapter, we need only note its restrictions when we represent our system of 

equations computationally. 

D. Computational Lagrangian Fluid Flow 

Using the equations derived in Section B, we can begin writing our one-dimensional 

Lagrangian compressible fluid-flow code. As was true in the heat code, we must define our 

variables in FORTRAN terms before we discuss their use in the code itself. Our variable 

names appear in code form as follows: p j  = p(j), qj = q(j), Ij sie(j), pj E rho(j), 

uj+i/2 E x(j-1). Note that x and u, 

while still defined at j + 1/2 and j - 1/2, are written as x(j), u(j), x(j-1), and u(j-1). For 

both of these variables an array index of j indicates a value at position j + 1/2, the wall 

directly to the right of cell j .  

(j), xj+1/2 E x(j), u j - 1 / 2  u(j-1), and xj-112 

Our program is structured similarly to the heat flow problem illustrated in Fig. 11-5. 

The code exists in five main sections: an initialization routine, a section for time checks 

and incrementation of counters, the definition of boundary conditions, the updating of 

variable values, and an output procedure. 

51 



First, let us examine our initialization procedure, which defines all the initial values 

necessary for the problem. Just as in the last simulation, this procedure is used to initialize 

time counters and define the length of the system being simulated, but this procedure must 

also set values which were not present in our last case. 

It defines the constants: 

qo 

gamma 

M mass/area 

ul 

U1' 

as occurs in Eq. (IV-24) 

the ratio of specific heats 

the velocity at the left end of the cylinder 

the velocity at the right end of the cylinder 

Also initial values must be assigned to the constants: 

rho0 the initial zone density 

sieO 

uo the initial zone velocity 

the initial zone internal energy 

A loop such as the one that assigned temperatures in the previous problem must be 

constructed to initialize all the real elements of arrays rho as rho0, sie as sie0, and u as 

u0, and to compute initial values for x, p, and q using Eqs. (IV-3), (IV-23), and (IV-24), 

respectively. 

After the initialization procedure, the program moves into the same sort of loop as 

did the heat program: making checks, incrementing time counters, updating boundary 

conditions, and updating the arrays. The time check portion of the loop is exactly the 

same as in our last two codes and can be written by repeating what was discussed in 

Chapter 11. The boundary conditions and array assignments are also quite similar to those 

of our first program but must now be modified to deal with a group of arrays as opposed 

to a single array of temperatures. 

The boundary conditions must be defined for each variable that is referenced at the 

j = 0 or j = jbart-1 positions. We can determine which variables are referenced in these 
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positions by referring to the equations that define our variable values: Eqs. (IV-3), (IV-IO), 

(IV-ll), (IV-16), (IV-23), and (IV-24). 

From Eq. (IV-ll), which appears in code form as 

rho($ = - x(.i - 1)) , (IV-37) 

we see that x(0) will be referenced, indicating the need for the position at the left of the 

system to be prescribed in our boundary conditions. By similar analysis of Eqs. (IV-16) 

and (IV-24), we see that there is also a need for values to be determined for u-l/2 and 

uj+1/2, and for this reason boundary conditions must be assigned to u(0) and u(jbar), 

representing u-l/2 and uj+1/2, respectively. 

An examination of Eq. (IV-10) might lead the reader to believe that boundary 

conditions are also required for p and q at position jbar+l. This requirement would 

be true if the wall at the right of the cell were not prescribed, indicating a u(jbar) that is 

determined independently of p and q. The only three variables that must be modified to 

establish our boundary conditions are x(O), u(O), and u(jbar). 

These variables should be assigned according to the system we wish to represent. For 

the piston problem, the wall at the right is stationary, indicating that u(jbar) = ur. The 

velocity at the leftmost cell wall in this problem is equal to the velocity of our simulated 

piston, u(0) = ul. The position of the leftmost cell wall is equal to its position at the old 

time step plus the distance that it moves to the right during the new time step, x(0) = 

x(0) + dt * ul. 

In our boundary conditions, we set a value of u(jbar) and not u(jbar+l). This value 

may seem strange to the student, as it does not make use of a ghost zone but rather 

modifies a real value in the array. It is allowed because u(jbar) itself exists at a boundary, 

representing the velocity at the wall directly to the left of zone jbar. In effect, a ghost zone 

is being modified in which u(jbar) defines the rightmost wall. 

With the boundary conditions updated, the code then moves into the updating portion 

of the program. This is an explicit procedure, which does not use the nested loop structure 
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that was employed in the previous chapter. We are once again dealing with a single loop 

that assigns new array values based on the values at the previous time step. However, this 

time we are not dealing with a single array of temperatures but a series of interdependent 

arrays. 

This change presents a problem that was not present in the previous simulation, 

n-amely that of updating the values of the variables in an order such that all terms defined 

at time n in an equation exist at the same time step. This problem is a more complicated 

version of the one that caused us to create a Tnew array in Chapter 11. Now we are not 

only concerned that the terms of a single array exist at the same time step, but that the 

values of a group of arrays be updated in an order such that each variable is calculated 

using values from appropriate time steps. 

To understand how this order is determined, let us first list our six equations in 

pseudo-code format. All variables are expressed as they would be in FORTRAN with the 

exception of the superscripts which are used to remind the reader of the time step at which 

each of these terms exists. In this form, Eq. (IV-3) becomes 

x"+'(j) = xn(j) + un(j) dt. (IV-38) 

Equation (IV-10) becomes 

Equation (IV-ll), written at the new time step, is 

rhon+' (j) = M (x"+l(j) - xn+l(j-l) ). 

Equation (IV-16) becomes 

sienfl = sie"(j) + (dt/M) * (qn(j)+pn(j)) * (un(j-l) - un(j)). 

Equation (IV-23) at the new time step is 

p""(j) =(gamma - 1) * rhonf1 (j) * sien+'(j). 

Equation (IV-24) also at the new time step is 

54 

(IV-39) 

(IV-40) 

(IV-41) 

(IV-42) 



if (qn+l(j) . It. 0) qn+l (j)= 0.0, (IV-43) 

where cn+' is computed at cell j as in Eq. (IV-27). 

The equations are placed in an order such that each variable exists at an appropriate 

time step when it is used. For example, both x and u must exist at time step n when 

Eq. (IV-38) is implemented, so this equation must appear before Eq. (IV-39). By similar 

argument, Eq. (IV-39), which includes a p term at time n, must appear before Eq. (IV- 

42), which updates p .  Further examination of equations in this manner leaves us with 

a final order in which these equations must be placed, namely, Eq. (IV-38), Eq. (IV- 

41), Eq. (IV-39), Eq. (IV-40), Eq. (IV-42), and Eq. (IV-43), where the third and fourth 

are interchangeable, as well as the fifth and sixth. The variable updating portion of the 

program is a loop that implements these transport equations in an appropriate order. 

I 1nitialB.C. I 
7 1  t = stime 

Figure IV-5 
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With these four sections completed, all that remains is to construct an output 

procedure desirable to the user, and the one-dimensional Lagrangian fluid code is complete. 

A graphical representation of this code appears in Figure IV-5. 

E. Shocks and Shock Tubes 

The following five figures are plots of the density of the fluid in the cylinder as the 

piston moves in from the left. The parameters chosen for this simulation are: length 

= lO.(cm), ul = 0.5(cm/s), ur = O.O( cm/s), gamma = 5/3, jbar=20, rho0 = 1.0 (g/cm3), 

sieO = 0 (cm2/s2), qO= 0.3, and dt = 0.05(s). Plots appear at times of 2, 4, 6, 8, and 10 

seconds respectively. 

9 - 

0 - 

9 ! 0 

a 

Densities at Time 2 (s) 

2 .I 5 0  7 8  1o.a 

Figure IV-6 

Densities at Time 4 (s) 

a1 I a. D 2. I S. 0 7 .z 10.0 

Figure IV-7 

56 



0 2.1 

Densities at Time 6 (s) 

9.0 7 .a 10.0 

Figure IV-8 

Densities at Time 8 (s) 

Figure IV-9 

Densities at Time 10 (s) 

Figure IV-10 
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The phenomenon that we are examining in these plots is known as a SHOCK, a rapid 

transition between two states that moves relative to the fluid. Weak shocks occur when 

fluid is moved at low speeds, but the effects of shocks are most notable when a fluid is 

moved at a velocity that is near to or greater than the sound speed of the fluid. A shock 

can be visualized by using the analogy of an evenly spaced line of billiard balls. 

Consider the case in which a narrow channel has a piston at one end and is filled with 

evenly spaced billiard balls, as depicted in Fig. IV-11. 

Figure IV-1 1 

The leftmost ball is pushed to the right by the piston and begins to pile up balls in front 

of it as it moves down the passage. This movement creates a regon in which billiard balls 

exist at a much higher density than in the rest of the passage, because the billiard balls 

that are moving are touching each other whereas the stationary ones are still evenly spread 

apart. The front of this compressed region (called the shock or SHOCK FRONT) moves 

forward faster than the piston itself because billiard balls are constantly piling up in front 

of the piston as it moves to the right. This system is illustrated in Fig. IV-12. Note that 

in this figure the transition from the compressed region to the undisturbed surroundings 

is virtually instantaneous, and that the shock front is not a gradual change in density but 

rather takes place over a very narrow span. 

Our Lagrangian plots demonstrate this sharp contrast between compressed and 

uncompressed fluid that occurs in a shock. In these plots we can also see the compressed 

region expanding and the shock front moving at a velocity that is greater than that of 

the piston. The velocity of the shock front can be predicted, as can other properties, 
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compressed region 

shock front 
(moves faster than the piston) 

Figure IV-12 

by appealing to the equations that describe the theory of shocks. In particular, we will 

be using the equations of INFINITE STFCENGTH SHOCKS, shocks that occur when the 

shock speed is large compared to the sound speed ahead. 

These equations will not be derived in this work, but such derivations are available in 

various textbooks and monographs, specifically in “Fluid Dynamics-A LASL Monograph” 

by Francis Harlow and Anthony Amsden, LA-4700. In an infinite strength shock, these 

equations are 
Y + l  u s  = - 2 UP 3 

where us is the velocity of the shock, and up is the velocity of the piston, and 

(rv-45) 

where ps the density behind the shock, and PO is the initial density of the fluid. 

Applying these equations to the parameters used in our simulation, we predict that 

the shock will move forward at a speed of 0.66 (cm/s), and produce a compressed region 

of density 4 (g/cm3). These two values can be used to verify the results presented in 

Figs. IV-6 through IV-10. 
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The next two graphs illustrate the effect of q0 on the accuracy of our numerical 

simulations. If q0 is chosen too low, the answer becomes numerically unstable, as is 

illustrated in Fig. IV-13. 

0 - 
0 

-7 -_ 
9 
n- 

c -.- 
0 
a 

-. Densities at Time 10 (s), q0 = 0.1 
-1 

Figure IV-13 

If q0 is too high, on the other hand, the answer is stable but inaccurate, losing the degree 

of clarity that was present in the q0 = 0.3 graphs. 

Densities at Time 10 (s), q0 = 0.75 

I I tr 5'. 0 7 .8 10.0 

Figure IV-l'4 

At even higher q0 values, the diffusional stability condition is violated, resulting in the 

program being terminated by errors. 
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A second problem that can be modeled using a one-dimensional Lagrangian code 

is that of a SHOCK TUBE, a tube that contains two fluids, usually gases, of different 

densities. Computationally, this problem is set up by setting al l  velocities to zero and 

creating an array that is made up of one set of zones at a density pleft; and another set 

of zones at a different density pright. Because our equations assume a constant M ,  these 

zones must be MASS MATCHED such that the mass of every zone is a constant. This 

matching is done by decreasing the initial length of the denser zones relative to the initial 

length of the less dense zones such that dzp  is a constant. 

In the example presented in this work, Pleft; is chosen to be 1 (g/cm3) while pright is 

4 (g/cm3). Mass matching is achieved by multiplying the length of the left zones by 8/5 

and multiplying the length of the right zones by 2/5 so that 8/5 x 1 = 8/5 = 2/5 x 4. The 

resulting code appears as the following: 

do 100 j = ljbar/2 

rho(j) = rho0 

x(j) = x(j - 1) +(8./5.) (length/float (jbar) ) 

100 continue 

do 200 j = (jbar/2)+l,jbar+l 

rho(j) = rhoO"4 

x(j) = x(j - 1) +( 245.) * (length/float (jbar)) 

200 continue 

For the results shown in this simulation, the following parameters are used: length = 

10.0 (cm), ul = 0.0 (cm/s), UT = 0.0 (cm/s), jbar = 20, rho1 = 1.0 (g/cm3), rhor = 4.0 
(g/cm3), sieO = l.O(cm 2 2  /s ), qO= 0.3, gamma = 5/3, and dt = 0.05 (s). Note that sie0 

is not equal to zero in this simulation; there woid  be no motion of fluids in the shock 

tube without some initial internal energy being present. Figures IV-15 through IV-20 are 

graphs of this system at times of 0, 1, 2, 3, 4, and 5 seconds respectively. 
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Densities at Time 0 (s) 
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Figure IV-15 

Densities at Time 1 (s) 
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Figure IV-16 

Densities at Time 2 (s) 

Figure IV-17 
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Densities at Time 3 (s) 

Figure IV-18 

Densities at Time 4 (s) 
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Figure IV-19 

Densities at Time 5 (s) 

Figure IV-20 
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In these graphs we see three major features: a shock wave moving to the left, a 

CONTACT DISCONTINUITY between the two fluids that is also moving to the left, and 

a RAREFACTION WAVE that is moving to the right and bouncing off of the wall. Each 

of these elements has been labeled in Fig. IV-21, below. 

- -- - 
Q -  
c 

9.  - 
? -  - 

contact discontinuity 

shock front 

Figure IV-21 

The equations that describe the properties of each of these three features of the shock 

tube problem will not be included in this work. Once again, the reader interested in these 

equations should refer to LA-4700 or a similar work. 

The same sort of instabilities that were present in the piston problem can also be 

induced in the shock tube problem, as is illustrated by the following plots of density at a 

time of 2 seconds, each generated by the same parameters as the previous graphs except 

for q0, which is 0.1 in the first graph and 0.75 in the second. 
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Densities at Time 2 (s), q0 = 0.1 

- 
q- 

P 

Figure IV-22 

Densities at Time 2 (s), q0 = 0.75 

Figure IV-23 

Again, if q0 is increased to an even higher level, the code will become numerically unstable. 

In this chapter we have seen a number of simulations that can be created using the 

Lagrangian equations for one-dimensional compressible fluid flow. In the following chapter, 

we will solve the same sorts of problems using an Eulerian method, learning a different 

technique that can be used to solve the equations of fluid motion computationally. 

.. 
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V. EULERIAN FLUID DYNAMICS 

A. Eulerian Methods and Advective Flux 

In the previous chapter we examined the use of Lagrangian methods in solving the 

equations of one-dimensional compressible fluid flow. We are now going to approach the 

same problem from a different perspective, using an Eulerian technique. In this method the 

zone positions are held completely fixed, while all quantities are allowed to move between 

zones. Cell masses are not constant in time, but instead fluid moves between cells; while 

only the spatial coordinates of the zones remain constant. 

This constancy of spatial coordinates is maintained by the calculation of ADVECTIVE 

FLUXES, fluxes that occur as a result of the motion of fluid from one region to another. 

An example of this type of flux is the transfer of heat by convection, where heat energy 

is moved from one region to another by the transfer of the material that contains that 

energy. The new region is heated not because the material in that region has absorbed 

the energy from another region, but because a new, hotter material has been moved in to 

replace the old. 

This type of flux is in contrast to the NONADVECTIVE FLUXES that were present 

in our Lagrangian calculations. Those fluxes occur when the quantities themselves move 

from one region to another without any motion of material. An example of a nonadvective 

flux is heat conduction. 

While our previous simulation dealt only with nonadvective fluxes, our Eulerian one 

dimensional fluid code will include both advective and nonadvective fluxes. In order to 

accomplish this, we must return to our six equations that describe the interaction of the 

various physical quantities and add to each a term that describes the advective fluxes that 

are intrinsic to the Eulerian method. 
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B. The Equations of Eulerian Fluid Flow 

In order to understand the mitnner that advective flux can be mathematically 

represented, we must first take a closer look at the situation that it represents. Consider a 

system such as in Fig. V-1, in which a portion of the material in one zone is being moved 

into the zone that is adjacent to the right. 

- 
u = velocity 

Figure V-1 

In this picture we see that when the material in a zone is moving at a velocity u, the 

material contained in a length u d t  will be moved into the adjacent cell. Because each zone 

hai an area A, the volume moved from one cell to another is A u dt. 

This transfer of volume can be multiplied by p, the mass per unit volume, to obtain 

the following equation for total mass crossing the cell boundary in a given time step: 

Total Mass Crossing Boundary in a Time Step (dt) = A p u dt (V-1) 

This equation can be used to find the mass flux, the total mass crossing per unit time per 

unit area: 
Apudt 

dt  A = p u  MassFlwc = 

Equation (V-2) is a statement of the advective mass flux between two cells. It illustrates 

a much more general principle that can be shown by replacing p by a value Q, the density 

of any quantity that is being advected. In this general case 

c. 

_ -  

Advective Flux = Qu . (V-3) 
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The density of each of the various physical variables is computed by simply dividing 

the desired quantity by the volume of a cell. Consider the case of momentum, for example. 

As was stated in the previous chapter, momentum is m a s  times velocity: 

m u = momentum. 

Dividing both sides by the volume of a cell, we obtain 

momentum - - mu 
volume volume 

Because m/volume is p and momentum/volume is the momentum density, this equation 

can be rewritten: 

and 

pu = momentum density. 

By a similar process, we find that 

p l '  = internal energy density , 

P U2 - = kinetic energy density . 
2 

Note that I in Eq. (V-7) is internal energy per unit mass. 

Substituting these three density terms into Eq. (V-3), we obtain the following 

equations of advective flux: 

Advective flux of mass = pu 

Advective flux of momentum = pu2 

Advective flux of internal-energy = p I u 

Advective flux of kinetic energy = - PU2 
2 

(V-9) 

(V-10) 

(V-11) 

(V-12) 

We will use these expressions in deriving the equations of Eulerian fluid flow 

68 



We begin with the expression for density, which was described in our Lagrangian 

calculations as 

(Iv-11) 
M py = 

xy+1/2 - xy-1/2 - 
This expression needs to be modSed to reflect the fact that mass is no longer a constant 

and that distance between cell walls is no longer a variable. To m o w  this equation, we 

first substitute dx, the fixed distance between the cell walls, for xjn+l/2 - n 

M 
dx 

p = - *  (V-13) 

We must now derive an expression for changes in M ,  the mass of a cell divided by the 

area. This derivation is similar to that of the expression for heat in Chapter 11. &om mass 

conservation, 

massy+' - massy = amount in - amount out.  (V- 14) 

Because amount in and amount out are simply flux x area x time step, and flux has been 

defined by Eq. (V-Z), numerical expressions for both these terms can be calculated: 

By substituting these two values into Eq. (V-14) the change in mass, massy+' - massy, 

can be expressed as follows: 

A mass = ( p ~ ) j - ~ / 2  A dt - ( ~ ' L L ) ~ + ~ / ~  A dt . (V-17) 

Using our definition of M as mass divided by area and factoring out like terms, we obtain 

an equation for change in M :  

Combining this equation with Eq. (V-13), we fhd the following: 

(V-18) 

(V-19) 
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Because the new density is equal to the old density plus the change in density, p + Ap, we 

are left with a final equation for the updating of densities that is made up of two parts: 

an expression for the density at the old time step and an expression for the change due to 

advective flux: 

(V-20) 

This analysis leaves us with an equation that expresses density at the new time step, but 

also presents us with a problem. Equation (V-20) makes use of the advected pj-1/2 and 

pjtlj2 densities expressed at the left and right wall of cell j .  These quantities cannot be 

referenced directly but instead must be computed using one of two methods: CENTERED 

or DONOR CELL. 

Centered expressions for advected quantities are computed by averaging the values at 

the cell centers to the right and left of the wall across which fluid is being advected. In 

our case, centering would lead to an expression for density in the form of Eq. (V-15): 

This value is not acceptable for pj-1/2, however, because it 

UNSTABLE, meaning unstable no matter how small we choose 

for this instability will be discussed in Chapter VI. 

(V-21) 

is UNCONDITIONALLY 

our time step. The reason 

A better method is the donor-cell technique, which uses the upstream value as the 

value at the advection cell wall. In this technique, the value of a quantity at the cell wall 

is equal to the value at the left cell center if the flow is from the left or equal to the value 

at the right cell center if the flow is from the right. This choice of values is mathematically 

or 

( ~ ~ ) j - 1 / 2  = pjuj-1/2 if uj-1/2 < 0 

and is illustrated visually in Fig. V-2. 
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j -  1 I J  
j - 112 

Figure V-2 

The donor technique should be employed wherever a quantity is being advected across a 

cell wall, as is the case with internal energy. 

The Eulerian internal energy equation can be calculated beginning with the Lagran- 

gian equation: 

This transport equation for I is made up of 

( U h 2  - ?-13n+1/2) (N-16) 

two major terms: the internal energy 

at the last time step (IT) and the change because of nonadvective flux $$ (q; + p y )  

( U Y - ~ , ~  - u ; + ~ / ~ ) .  To write this equation in an Eulerian manner, we must add a third 

term to represent the advective flux. Before this term is added, however, this equation 

must first be modified. Multiplying by M ,  we obtain 

(MI);" = (MI):  + dt(p + q)y (u7-1/2 - u:+'/~) . (V-23) 

This equation represents the total change in M I  due to the nonadvective pressure terms. 

We saw in Eq. (V-20) that the t rwpor t  equation for a miable whose value is changed 

only by advective flux appeas in the form 

(V-24) 

where Q is any variable property of the cells and V is the volume of a single zone. Using 

this equation to express change due to advective flux in terms of energy density, we obtain 

(V-25) 
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Combining this equation with Eq. (V-23) gives us an expression for change in internal 

energy that accounts for both advective and nonadvective fluxes: 

Because zones are stationary in an Eulerian simulation, M = p dx. Therefore, this equation 

can be rewritten as 

This equation is computed using the donor-cell technique for the puI term: 

( p u I ) j - 1 / 2  = Uj- l /2 (P I ) j - l  if uj-1/2 > 0 

or (V-28) 

(PI)j-1/2 = uj-l/2(PI)j if +1/2 < 0 - 
By a process similar to the derivation of Eq. (V-26), Eq. (IV-10) is rewritten as 

(V-29) (Mu)jn=1;2 = (Mu)?+-1/2 - dt ((P + d:+i - ( p  + q)y)  - 

This equation is combined with an advective equation in the form of Eq. (V-25), namely 

(V-30) 

to obtain an equation that accounts for both the advective and nonadvective fluxes that 

affect momentum: 

(V-31) 

Once again referring to our equation for M given ;fixed distance between cells (M = p dz)  

we obtain 

(V-32) 
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In this equation, values for u at the cell centers must be computed using the donor-cell 

technique. These appear in the form 

or 

where U j ,  ~ j - 1 1 2 ,  and ~ j + l / 2  are computed as averages of the values half a cell to the left 

and half a cell to the right of the point at which these quantities are defbed: 

(V-34) 

(V-35) 

(V-36) 

The student may pose the question of why these averages are used in donor-cell calculations, 

as they seem to indicate a centered approach that is unconditionally unstable. To explain 

why these averages are employed, we return to our momentum cell diagram, noting where 

these various variables are located. In the following figure, the letters in bold indicate 

quantities at positions where their values are not specified. 

momentum cell 

I 1 

Figure V-3 
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The terms that employ the donor cell technique are made up of two portions, the 

donoring velocity and the quantity that is donored. In our original case of density flux, 

these quantities are uj-1/2 and pj-1/2,  respectively. The donoring velocity is always taken 

at the position at which the flux is taking place, whereas the donored quantity is taken at 

the center of the cell to the upstream side of the cell wall at which a flux is taking place. 

For density flux and internal energy flux, all of these values can be taken from positions at 

which these quantities were directly defined: density and internal energy at the cell centers 

and velocity at the cell walls. For momentum flux, however, the situation is different. 

From Fig. V-3, we see that the donoring velocity at the wall of the momentum cell is 

uj) whereas the donored quantities at the center of the momentum cell exist at positions 

j - 1/2 or j + 1/2. This configuration forces us to use values that are not directly present 

in our arrays. These values: u j ,  , 0 j - ~ / 2 ,  and pj+1/2,  are obtained by averaging as in 

Eqs. (V-34) through (V-36). 

We have now derived Eulerian equations for density ( p ) ,  internal energy ( I ) ,  and 

momentum (mass x u). Values for pressure and viscous pressure ( p  and q)  are determined 

directly from the values of the other three quantities at each new time step. Thus, the 

equations for p and q from Chapter IV can be used in our Eulerian simulation. We have 

completed all the derivation necessary to obtain a set of equations for the simulation of 

one-dimensional fluid flow in an Eulerian manner and can now begin to  implement these 

equations on the computer. Before we begin this implementation, however, let us first take 

a look at how our equations appear in partial-differential form and make some observations 

as to the way that Lagrangian and Eulerian calculations are related. 

C. The Partial-Differential Equations of Fluid Flow 

Once again, we are going to examine the partial-differential equations that relate 

to our finite-difference equations. As was the case when we previously examined these 

equations, this section is not necessary in the writing of our finitedifference code. It is 

provided only as an additional method of looking at this system. 
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By a process similar to that used in Section C of Chapter 2, we can rewrite 

our equations of fluid flow by taking the limits as dx and dt approach zero and 

generating equations in partial-differential form. In this form Eqs. (V-20) (mass), (V-27) 

(momentum), and (V-31) (heat energy) appear as follows: 

(V-37) 

(V-38) 

(V-39) 

These equations represent the Eulerian form of the transport equations for mass, 

momentum, and heat energy respectively. They are another form of the Navier-Stokes 

Equations. 

We are going to take a look at these Eulerian equations and relate them to the 

equations used in the Lagrangian code, trying to gain a better understanding of why 

these two seemingly dissimilar methods yield computationally similar results. 

We will begin with the mass equation, Eq. (V-37). By the chain rule, the second term 

can be expanded to obtain 
ap dp du 
- + u - + p - = o .  at ax ax 

(V-40) 

We now employ the mathematical identity for the total differential of a function of 

two variables, f (x, t): 
af af df = -dt + -dx . at dX 

(V-41) 

This equation states that for arbitrarily slight chkges in t and z (denoted by dt and dz) 

the function f changes by an amount df, as given by the formula. Dividing by dt gives us 

df df df dx 
dt at dx dt +--. -=-  (V-42) 
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In the special case when $ follows the motion of a fluid, as in a Lagrangian calculation, 
dx then = u and 

df  - d f  8 - - - +u- . 
d t  dt dx 

(V-43) 

This is an expression for the rate of change of f along the motion of a fluid, also known 

as the LAGMNGIAN DEWATIVE. It will be denoted in this work as $ as opposed 

to g. Elsewhere in the literature, the notation is often used to further emphasize 

the difference between the partial and Lagrangian derivatives. The meaning, however, is 

equivalent. 

Using the Lagrangian derivative to rewrite Eq. (V-40), we obtain 

d p  d u  
d t  dx - + p - = o .  

This equation is the Lagrangian partial-differential equation for fluid flow; its finite- 

difference approximation is equivalent Eq. (W-11). To show this equivalence, we begin 

with Eq. (V-44) and divide by p2 to obtain 

= O  + -- p2 dt p d x  
1 dp i a u  -- 

or 

Finite differencing the second term gives us 

(V-45) 

(V-46) 

(V-47) 

Note that in this equation d x  is no longer part of a partial derivative but a finite distance 

between zones. 

From Eq. (V-13) we have M = p d x ,  and from Eq. (IV-1) we have u = d x / d t ,  so we 

can write this equation as 
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In this equation, all d t  terms are Lagrangian derivatives and can thus be treated in the 

same manner. We can therefore integrate this equation with respect to d t  to obtain 

1=( X j + l / 2  M - X j - 1 / 2 )  

P 

This equation is equivalent to our Lagrangian density equation, 

(V-49) 

(Iv-11) 

We see then, through the use of partial-differential equations, that the Eulerian and the 

Lagrangian mass equations are equivalent in the properties that they represent. 

This equivalence is also true for the momentum equation, which appears in Eulerian 

form as Eq. (V-38). This equation can be expanded to obtain 

du dp du dpu dP p- +u- +p- +fu- = -- at at ax ax dx ’ (V-50) 

where P s i d e s  the total pressure (P  = p + a). 
Returning to the mass equation (V-37), we see that the sum of the second and fourth 

terms of Eq. (V-50) is equal to zero; this gives us 

dU dU dP p-+pu-=-- 
at d X  d X  

or 

Employing the Lagrangian derivative, we obtain 

du dP 
pelt=--- d X  

(V-51) 

(V-52) 

(V-53) 

This equation is the Lagrangian partial-differential-equation for momentum. Dividing both 

sides by p and finitedifferencing it gives us 

(V-54) 
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which, with a shift of indices, is equal to Eq. (IV-10): 

n+l - d t  
U j + l / 2  - u7+1/2 + (Pj” + qy - Pjn+l - qy+1) - 

For internal energy, the process is similar. Eq. (IV-39) is expanded 
dI  dp ar dpu Pdu 

p- + I -  + pu- +I- = -- , dt  d t  ax ax d X  
the second and fourth terms are dropped using the mass equation 

p ( g + u E ) = P - ,  dU 
d X  

(IV-10) 

(V-55) 

(V-56) 

and finally the Lagrangian derivative is used to get the Lagrangian equation for change in 

internal energy: 

(V-57) 
d I  dU p- = -p- . 
dx d X  

Through finite differencing, this equation can be shown to be a partial-differential 

representation of Eq. (IV-16): 
d t  1“+l 3 = I; + - M (qy +py) (uy-1/2 - u + 1 / 2 )  . 

So we see that for an Eulerian simulation, our equations appear as 

- 0 7  -+-- 8P dPU 
dt ax 

dpu dpu2 dP - +-+-=0 ,  
dt  ax ax 

- 0 ;  
dpI dpuI Pdu 
dt d X  +-- d X  +- - 

whereas, in a Lagrangian simulation, our equations are 
d p  du 
dt  dx - +p- = 0 ,  

du dP 
d t  dx 

p - + - = o ,  

(IV-16) 

(V-37) 

(V-58) 

(V-59) 

(V-60) 

dI d u  
d t  d X  p- + P- = 0 .  (V-61) 
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These partial-merentia1 equations provide another way of looking at our onedimensional 

fluid-flow equations. They help to explain the Lagrangian and Eulerian finitedifference 

equations and demonstrate that, although these are seemingly different, their underlying 

principles are the same. 

D. Computational Implementation of Equations 

The structure of our Eulerian onedimensional fluid code is similar to that of the 

Lagrangian code: it contains the same five sections, its variable declarations are almost 

the same, and the output procedure is of the same type. 

There are, however, some major differences between these two codes. These diflerences 

are found in the initialization procedure, in the boundary conditions, and in the equations 

that are used to update the variable values. 

The order in which our variables are given new values is again rho, u, I, p, and q; but 

rho, u, and I must now be calculated using quantities calculated before the program enters 

the loop that assigns new values to these arrays. This loop must generate values for rho, 

u, and I; but the transport equations that were derived in Section B are written in t e rm 

of p j ,  (pu)j+l/z, and (p1) j .  We have to obtain array values for the following quantities 

before calculating the other physical variables: 

rhon(j)-py+' 

rhoun(j )-P;:$~ 
rhoin(j)-pq+' . 

Each of these arrays is calculated using the Eulerian equations of transport. The 

calculations are done for all array values before any updating of rho, u, I, p, or q is 

done. 

Density is computed by simply setting the rho array equal to the rhon array: 

rho(j) = rhon(j) . 
Velocity, u is computed by dividing the density times velocity array by the density array 

at position j+1/2: 
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u(j) = rhou(j)/(.5 * (rhon(j) + rhon(j+l))) . 
Internal energy is computed by dividing the internal energy times density array by the 

density array: 

sie(j) = rhoin(j)/rhon(j) 

The p and q equations remain unchanged fcom the Lagrangian case. This situation leaves 

us with a loop that assigns values for rho, u, I, p, and q that appears in the following form: 

do 300 j =ljbar 

rho(j) = rhoun(j) 

u(j) = rhoun(j)/(.5*(rhon(j)+rhon(j+l)) 

sie(j) = rhoin(j) / rhon(j) 

p(j) = (gamma-1) * rho(j) * sie(j) 

asie = gamma * (gamma-1) * abs(sie(j)) 

c = abs(ul) + sqrt(asie) 

q(j) = q0 * rho(j) * c * (u(j-1)-u(j)) 

if (q(j).lt.(O.O)) q(j) = 0.0 

300 continue 

This loop is preceeded by another loop that computes rhon, rhoun, and rhoin arrays 

using the Eulerian equations for the transport of mass, energy, and momentum: 

(V-20) dt  
PY+l = Pj” + - dx ( (PU)j - l /2  - (PU)j+1/2) 

Each of these equations requires the use of the donor-cell technique, meaning that donor- 

cell values must be computed for 

~ j - 1 / 2  and ~ j + 1 / 2  

(PU I ) j -1 /2  and (P  u I ) j + l / 2  

(Pu2>j and (pu2)j+l - 
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The problem of having to write our equations in a manner that allows the computation of 

donor-cell for each of these terms can be approached in at least two ways: with a series of 

if/then checks or with a double look-up technique. 

The first of these methods involves writing a separate if/then check for each of these six 

terms. This approach uses six different variables, each with values determined according 

to the direction of the motion of the fluid, with six separate checks being made for the 

direction of fluid motion at every loop iteration. This method is viable, but it triples the 

number of if/then checks, calls for the use of additional scalar variables, and unnecessarily 

complicates our code. 

A much easier technique is to carry out all the flow direction checks before any of the 

arrays are computed. To do this, we create two arrays of variables: idnr and jdnr. In a 

loop at the beginning of the variable updating portion of the program, all the elements in 

these arrays are assigned values of either 0, if the flow is from the left to the right, or 1, if 

the flow is from the right to the left. idnr represents the motion of fluid at the cell walls 

( j  +1/2), while jdnr represents the flow of the fluid at the cell centers (j). The loop in 

which they are computed is the following: 

do 100 j =l,jbar 

idnr(j) = 0 

jdnr(j) = O 

if (u(j).lt.O.O) idnr(j)=l 

if ((u(j-1)+u(j)).lt.O.O) jdnr(j)=I 

100 continue c- 

We can “e these integer arrays to determine the positions at which the donor-cell terms 

are computed. By indexing our variables with j plus an appropriate value of idnr or jdnr, 

we can rewrite the donor cell terms in the following manner: 
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( p  u)j- 1/2-rho(j-l+idnr(j-l)) * u(j-1) 

(~u)j+1/2--rho(j+idnr(j)) * u(j) 

( p  u I)j-1/2-rho(j-l+idnr(j-l)) * u(j-1) * sie(j-l+idnr(j-1)) 

( p  u I)j+l/2--rho(j+idnr(j)) * u(j) * sie(j+idnr(j)) 

(p u2)j--(u(j-1)+u(j)) * .5 * u(j-l+jdnr(j-1)) 

(rho(j-l+jdnr(j-l))+rho(j+jdnr(j))) * .5 

(pu2)j+l-(u(j)+u(j+l)) * .5 * u(j+jdm(j)) * 
(rho(j+jdnr(j))+rho(j+l+jdnr(j+l))) * .5 

The terms on the right of this table are simply computational translations of Eqs. (V-22), 

(V-28), and (V-33), using a double look-up technique rather than carrying out an if/then 

statement for each of the equations. 

We can compute rhon(j), rhoun(j), and rhoin(j) by constructing a loop that follows 

the computation of the donor-cell arrays but comes before the computation of the rho-u-sie 

loop. This loop should appear similar to the following, with the values from the above 

table being used whenever one of the bold (donor-cell) terms is used. 

do 200 j = 1,jbar 

c.. density 

rhon(j) = rho(j) + ((dt/dx) * ( (rho U)j-1/2 -(rhou)j+lp)) 

c.. internal energy 

rhoin(j) = (rho(j) * sie(j)) - ((dt/dx) * ( (rho u sie)j+l/a- 

&(rho u sie)j-1/2 + (p(j)+s(j)) * (u(j)-u(j-1)))) 

c.. momentum 

rhoun(j) = (((rho(j)+rho(j+l)) * .5) * u(j)) - ( (dt/dx) * 
&((rho u2)j+1 - (rho u2>j> * (p(j+l>+s(j+1>-p(j>-q(j))) 

200 continue 
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To summarize, the variable updating portion of our program consists of first a donor-cell 

loop; then a loop to compute the mass, momentum, and internal energy densities; and 

finally a loop that changes the values of the rho, sie, u, p, and q arrays. The return 

designations of these loops have been numbered in this order. 

Returning to the issue of the boundary conditions: An analysis of our equations 

indicates a need for specified values of rho(0) and sie(0) in addition to u(0) and u(jbar) as 

in the Lagrangian case. Positions need no longer be updated because they remain k e d  

throughout the simulation; instead, the conditions must be added that sie at position 0 is 

equal to a variable siel, and rho at position 0 is equal to a variable rhol. These boundary 

conditions are of a different nature than those in the heat-transfer problem. There, a 

constant temperature was maintained at the wall by the recalculation of the value of T(0) 

at every time step. The equation was 

(11-21) 

This averaging is not necessary in the present code, because the value used at the wall is 

computed using the donor-cell technique. If flow is fiom the left to the right, as is the case 

with our piston, the values assigned to sie and rho at position j = 0 will effectively exist 

at the rightmost wall, j = 1/2. We are now faced with the question of what values should 

be assigned to the variables at these positions. 

In the Eulerian case, we do not represent the piston itself but rather a shock that 

is created by the motion of a piston somewhere upstream. We can therefore appeal to 

the equations for the fluid dynamics of shocks to determine our boundary conditions at 

the left: p = spa, and I = $PO. By substituting our “gamma” and “ul” for the y’s 

and u’s in these equations, we can generate quantities for rhol and siel that will help 

to maintain a shock wave. Finally, these two variables are added to the initialization 

procedure, completing our Eulerian code. A graphical representation of this code appears 

in Figure V-4. 
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I start I 

Boundary Conditions + )I 

Figure V-4 

E. Eulerian Results and Comparison of Eulerian and Lagrangian Simulations 

The following five figures are plots of the density of the fluid in the cylinder as the 

shock moves in from the left. The parameters chosen for this simulation are: length = 10.0 

(cm), u l=  0.5 (cm/s), UT = 0.0 (cm/s), jbar=20, rho0 = 1.0 (g/cm3), sieO = 0 (cm2/s2), q0 

= 0.25, gamma = 5/3, and dt = 0.05 (s). Note that these parameters are precisely those 

used to run the Lagrangian piston problem, with the exception of q0, which is lowered 

from 0.3 to 0.25 for the Eulerian simulation. Plots appear at times of 2, 4, 6, 8, and 10 

seconds respectively. 
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Densities at Time 2 (s) 

4 -. 

Figure V-5 

I I I I 

Densities at Time 4 (s) 

Figure V-6 

- Densities at Time 6 (s) 

Figure V-7 
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Figure V-8 

Figure V-9 

Note that the Eulerian shock is not as sharp as the Lagrangian shock, even at this 

lower value of q0. This difference is due to an artificial diffusion that results as an effect 

of the donor-cell technique. This effect will be discussed in Chapter VI. 

Once again applying the equations of shocks [Eqs. (IV-44) and (N-45)]  to the 

parameters used in our simulation, we predict that our shock will move forward at a 

speed of 0.66 (cm/s) and produce a compressed region with a density of 4 (g/m2s) . These 

values verify the results presented in Figs. V-5 through V-9. 

The next set of plots demonstrate the results that can be obtained by applying an 

Eulerian code to  the shock tube problem. The following parameters are used: length = 

10. (cm), ul = 0.0 (cm/s), ur = 0.0 (cm/s), jbar=20, rho1 = 1.0 (g/cm3), rhor = 4.0 
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(g/cm3), sieO = 1.0 (m 2 2  /s ), qO= 0.3 and dt = 0.025 (s). Our simulation is set up such 

that 0.8 of the tube is filled with the less dense fluid and 0.2 is filled with the denser 

fluid. This set up is necessary to parallel the situation simulated in Chapter IV. Unlike 

the Lagrangian simulation, however, no mass matching is necessary in the Eulerian case. 

As was previously stated, masses of zones in an Eulerian simulation are variable; only the 

positions of zones are constant. Figures V-10 through V-15 are graphs of density within 

the shock tube system at times of 0, 1, 2, 3, 4, and 5 seconds respectively. 

Densities at Time 0 (s) 

Figure V-10 

Densities at Time 1 (s) 

..- 
m L5 5. D 7.a I ea 

Figure V-11 
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Densities at Time 2 (s) 
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Figure V-12 

Densities at Time 3 (s) 

Figure V-13 

Densities at Time 4 (s) 
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Figure V-14 
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Densities at Time 5 (s) 
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Figure V-15 

These graphs contain the same features as the Lagrangian graphs: a shock wave 

moving to the left, a contact discontinuity between the two fluids that is also moving 

to the left, and a rarefaction wave that is moving to the right. These features have the 

same properties as those of the Lagrangian graph and are described by the same set of 

fluid-dynamics equations. 

Lagrangian and Eulerian simulations are also subject to the same' stability conditions. 

At-low q0 values, the Courant condition is violated, as illustrated in Fig. V-16. 

- 
d 

I 1 I f ho 1.5 5n 73 I L U  

c. 

Figure V-16 

At high q0 values, the features are smeared out: 

89 



0 
-1 Densities at Time 2, q0 = .75 

Figure V-17 

If q0 is raised even higher, the diffusional stability condition is violated and the program 

terminates. 

Although the Lagrangian and Eulerian simulations shwe the same stability conditions, 

they are quite different in the sharpness with which they resolve features at a given set of 

parameters. We see this by comparing graphs of both these simulations at a time step of 

2 (s) and a q0 of 0.3. 

Densities at Time 2 (s) Densities at Time 2 (s) 

W ihs 5n l d  DLI 

Eulerian 

Figure V-18 
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In this figure, we see that the features of the Lagrangian graph are much sharper than 

those of the Eulerian simulation. The difference in sharpness is particularly noticeable for 

the contact discontinuity, which is clear in the Lagrangian simulation but smeared out over 

several zones in the Eulerian simulation. 

The smearing of features in the Eulerian case is a result of the artificial diffusion 

that is intrinsic to the donor-cell technique. In order to understand why the donor-cell 

technique causes diffusion in this manner, as well as to understand why the Courant 

condition is present in an Eulerian simulation, we will have to make use of a method 

known as truncation error analysis. This method will be discussed in Chapter VI. 
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VI. TRUNCATION ERFLOR ANALYSIS AND THE COURANT 
CONDITION 

A. Introduction 

This chapter is unique in this book in that it is the only chapter in which we will 

not write code. We will instead examine a technique known as TRUNCATION ERROR 

ANALYSIS, which can be used to analyze the error of finitedifference approximations, and 

we will apply this method to determine a condition that must be met to ensure numerical 

stability of our fluid-flow model. 

This chapter is also unique in that it is almost exclusively based on the manipulation 

of partial-merentia1 equations. As was the case before, the use of these equations means 

that this analysis is not essential to  the construction of simulations. As was stated in the 

introduction, mastery of these equations is not a prerequisite to writing finitedifference 

codes. This chapter does not present the reader with any additional stability conditions 

or methods of representing finitedifference equations; its purpose is merely to clarify the 

ones that have already been discussed. 

Although not crucial to the writing of our programs, this discussion presents a method 

of analysis that is important for a person dealing with finitedifference codes. It serves to 

introduce a new method for examining the validity of our finitedifference approximations 

and determining the constraints that must be met for our equations to be numerically 

stable. 

We will apply this method to a number of cases, but first let us return to  a previously 

discussed method for determining numerical stability. Using the test solution method 

introduced in section 111-B, we will address the question of the numerical stability of 

the cell-centered finitedifference wave equation. This discussion will give us a familiar 

approach to which we can compare our truncation error analysis calculations. 
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B. Numerical Instability of the Cell-Centered Approach 

Consider the general form of the first order wave equation: 

aT dT  
- + a - = 0 .  d t  ax 

Finite-differencing this equation gives 

= O .  
TI"+1 - T' Tjn+l/2 - q - 1 1 2  

+ a  3 
d t  d x  

In the case where a cell-centered flux is used, where 

Eq. (VI-2)  becomes the cell-centered finite-difference wave equation: 

If we now use a test solution for T, choosing 

Eq. (VI-4) becomes 

(rn+l - rn) (&j+l)dz - eik(j-l)& 1 
+ a  Aeikjdx 

d t  2 d x  

or 
- 1 eikdx - e-ikdz 

= O .  2dx  + a  d t  

We now define a constant z such that 

adt  
d x  

Z f -  

which allows us to rewrite Eq. (VI-7) as: 

(eikdx - e-ikdx) 

2 r = l - z  

93 



Using the mathematical identity, eie = cos 8 + i sin 8, we obtain 

r = 1 - i zs inkdx .  

The magnitude of r is then 

I T ]  = d1+ 2z2 sin2 k d x  . 

(VI-9) 

(VI-10) 

This value is always greater than one, indicating that the solution will always diverge. 

Hence, the cell-centered wave equation is unconditionally unstable. 

C. Truncation Error Andysis 

We will now approach the same problem of determining the numerical stability of 

a wave equation that uses cell-centered differencing with another method of analysis. 

Instead of using a test case, the numerical stability of our finitedifference equations will be 

determine by truncation error analysis. In this method, partial differential equations are 

finite-differenced, and a TAYLOR SEFCES EXPANSION is used to determine the accuracy 

of the finite-difference approximations. 

A Taylor series expansion is based on Taylor’s theorem which states that for any 

differentiable function f ( x ) :  

(VI-11) 

where f‘: f“, f”’, etc., are the first, second, third, etc., derivatives of the function f .  

Because T is simply a function of j and n, our variables c m  be represented as follows: 

= T ( j d x , n d t )  

= T ( j  d x ,  (n + 1) d t )  

TT+, = T ( ( j  + l ) d x ,  n d t )  

q ! ~ ~  = T ( ( j  - l ) d x ,  n d t )  . 
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Expanding these values using a Taylor series and substituting the resulting terms into our 

cell-centered wave equation, Eq. (VI-4), gives us 

Tj” + d t g  + 2 dt2 at2 a2T - Tjn + 

d t  

] = o .  2dx  

(VI-12) 

In this equation, all terms of order dx3  or higher have been ignored. This equation can be 

reduced to 
6’T d t a 2 T  d T  

+a-=O - + -- 
at 2 d t 2  ax 

or 

(VI-13) 

d t  d2T (VI-14) 

We will ignore our -FT d t  a2T term for a moment, replacing it with an O ( d t )  to indicate 

d T  aT 
at ax 2 at2 
-+a- = ---. 

a term of order dt .  Our equation becomes 

aT aT 
at dX 

- -a- + O ( d t )  . -- 

Differentiating this equation with respect to time gives 

d2T 
-a- + O(dt) , d 2 T  -= 

at2 axat 

while differentiating with respect to x yields 

(VI-17) 
d2T a2T 

axat ax2 
-- - -a- + O(dt) . 

We can now use the value for kom Eq. (VI-17) to rewrite Eq. (VI-16): 

a t 2  

(VI-15) 

(VI-16) 

(VI-18) 

or 

(VI-19) 
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which can be substituted into Eq. (VI-14) to obtain 

8T aT 1 a2T - +a- = --a dt- +O(dt2) . at ax 2 ax2 (VI-20) 

Ignoring the O(dt2) term, we see that we are left with a wave equation that includes a 

diffusion term with a negative coefficient of conduction. In other words, if o = -$a2dt 

and we ignore our O(dt2) term and the propagation term (a$$), we have 

aT a2T 
at ax2 - - = 0- (VI-21) 

Returning to our discussion of the stability of difhsion equations in Chapter I11 we 

can now employ Eq. (111-14), rewritten as 

dt 
dx2 

I- = 1 - 4ff- . 

Using the o from our wave equation, we see that 

d t  
dx2 - I- = 1 +2a2- 

(VI-22) 

(VI-23) 

. From this expression we see that T will always be greater than 1, indicating the 

unconditional instability of the centered approach. The error in this type of finitedifference 

approximation causes a negative diffusion that causes the system to become numerically 

unstable. 

D. Truncation Error Analysis of the Donor-Cell Technique 

Now let us apply this same form of analysis to a wave equation that is differenced 

using the donor-cell technique. Consider a flow that moves from the left to the right, where 

a > O ,  

then 
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Using these values of Tj-112 and Tj+1/2 in Eq. (VI-2) gives 

‘j?+l- T’ Tj” - Tn- 
3 + a  L o .  

d t  d x  

Expanding this equation using a Taylor series up to the second order terms yields 

T’ + . d t x  dT + T F  dt2 d2T - Tj” + d t  

which can be reduced to  

dT d t d 2 T  dT d x d 2 T  
at 2 at2 ax 2 dx2  -’. - + -- +a- - a-- - 

Analysis similar to that of of Eqs. (VI-15) through (VI-18) gives the expression 

d 2 T  - = a2- + O ( d x )  + O ( d t )  . d 2 T  
at2 ax2 

This value can be substituted into Eq. (VI-29) to obtain 

-+a-= aT ( - t a 2 d t  + aT 
at ax + O ( d t 2 )  + O ( d x d t )  . 

(VI-27) 

(VI-28) 

(VI-29) 

(VI-30) 

(VI-31) 

By dropping OUT ag, O ( d t 2 ) ,  and O ( d t d x )  terms, we are once again left with a 

diffusion equation where 
CT = ( s a d x  1 - -a2dt )  1 , 

2 

but this equation assumes that a is greater than zero; a more general CT is 

In order for our equation to remain numerically stable, 

d t  
d x  T = 1 -4~- < 1. 

(VI-32) 

(VI-33) 

(VI-34) 
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or 
dt -40- < 0 ; 
dx 

which, assuming positive dt and dx, becomes 

O > O .  

Substituting our 0 from Eq. (VI-33) into this equation gives us 

or 

1 1 
2 2 

0 = - la1 dx - -a2dt > 0 

> O .  1-- la1 dt 
dx 

This equation is simply a statement of the Courant condition, 

dx 

(VI-35) 

(VI-36) 

(VI-37) 

(VI-38) 

(IV-36) 

We see then that an Eulerian calculation that uses the donor-cell technique has the same 

Courant stability condition found in Lagrangian codes. 

E. Summary of Numerical Instabilities and Artificial Viscosity 

Through the use of truncation error analysis to examine the accuracy of our finite- 

difference approximation of the wave equation, we have shown that this approximation 

represents not only the motion of a wave but a form of diffusion. In the cell-centered case, 

the conduction coefficient of this artificial diffusion is negative, indicating a system that is 

unconditionally unstable. This coefficient is 

1 
(r = --a2dt. 

2 
(VI-39) 

This instability can be avoided by using a donor-cell method, which yields a diffusion 

coefficient 
1 1 

0 = --a2dt + - la1 dx . 
2 2 

(VI-40) 
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This method remains stable as long as the Courant condition is satisfied. This method is 

flawed, however; for when we choose a case in which dt is very small compared to d x ,  0 

becomes large, creating a large amount of artificial diffusion in the simulation. While this 

diffusion does not create a numerical instability, it results in a less accurate simulation, 

causing sharp boundary layers to become smooth. 

In our simulations we will not attempt to avoid this lack of accuracy, but several 

methods exist that avoid this problem. One of the more useful of these methods is the 

ARTIFICIAL VISCOSITY technique, in which a cell-centered approach is used with an 

additional diffusional term added to counteract the negative diffusion intrinsic to the finite- 

difference approximations. Truncation error analysis of this method gives aa equation in 

the form 
dT dT 1 d2T d2T - +a- = --a2dt- f 
at ax 2 a x 2  3x2 

If the coefficient of artificial viscosity Ua is chosen, such that 

u, > (3 a2dt ,  

(VI-41) 

(VI-42) 

the numerical stability of the system can be maintained while increasing the accuracy of 

solutions. This method of improving finitedifference codes is a direct result of truncation 

error analysis. 

Truncation error analysis can be used to determine the validity of finitedifference 

approximations, indicate the conditions necessary to maintain numerical stability, and 

describe methods by which the accuracy of solutions can be improved. Although it does 

not have a major effect on the codes that we are writing in this series of exercises, it helps 

to explain some of the reasoning that lies behind these programs. A versatile and powerful 

tool, truncation error analysis is essential to the Gerson who wishes to examine the basic 

foundations on which finitedifference codes are based. 
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VII. TWO-DIMENSIONAL INCOMPRESSIBLE FLUID FLOW 

A. Calculations in Two-Dimensions 

Up to this point in this series of exercises, all problems have been one-dimensional., 

thus simplifying our simulations in a number of ways: their equations had only to take into 

account changes in a single direction, their boundary conditions have existed at only two 

points, and their arrays of variable values have been of a small, one-dimensional sort. For 

the systems that we have been dealing with up to this point, a one-dimensional approach 

has allowed us to simplify our problems while still generating results that were accurate. 

However, few problems can be represented in a single dimension. Our one-dimensional 

models assumed both cylindrical symmetry and radial uniformity, two qualities that are 

rarely found in the same system. Many more systems can be represented by using two- 

dimensional models. These models can represent any system that has uniformity in a single 

dimension, including the azimuthal direction used in cylindrically symmetric situations. 

The type of two-dimensional code that assumes cylindrical symmetry employs an T-z 

set  of coordinates. In this type of simulation, cells are defined by two numbers, T and z. 

T represents the distance of a cell center fiom the axis of the cylinder, and z represents 

the position of a cell center along that axis. The higher the r ,  the farther away from the 

center of the cylinder; the higher the z, the farther down along it. 

A second sort of two-dimensional code assumes translational symmetry in one 

direction. While changes between cells in such a code may take place in two directions, all 

quantities are assumed to be invariant in the third direction. It is this type of simulation 

that we will examine in this chapter. 

In this sort of code, an i-j set of cell counters are employed, with i representing the cell 

number in the horizontal direction and j representing cell number in the vertical direction. 

The resulting two-dimensional array of zones, also known as a MESH, is made up of i x j 

individual rectangles of length dx and height dy. This mesh appears in Fig. VII-1. 
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Figure VII-1 

Notice that each cell is referenced by two numbers:- i and j. The position of cell quantities 

will now be referenced by two subscripts instead of one: [Quantii&. Notice also that 

there are now four one-dimensional mays of fictitious zones: (i, 0), (i, j + l), ( O , j ) ,  and 

(z + 1, j). These are needed to represent the two-dimensional boundary conditions. 
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We will be using this mesh to simulate incompressible fluid flow in two dimensions. 

Our simulations will be Eulerian, allowing for a mesh of rectangles with fixed positions. 

Three main variables will be used, as shown in the following table: 

PTj = p ( i , j )  = pressure per unit density 

71 ui+112,j = u(i,j) = horizontal velocity 

wyj+1,2 = w ( i , j )  = vertical velocity 

Note that pressure per unit density is represented at the cell centers, horizontal velocity at 

the right and left walls of the cells, and vertical velocity at the top and bottom cell walls. 

A mesh in which variables are configured in this manner is known as a STAGGEBD 

MESH. A pictorial representation of a staggered mesh zone appears in Fig. VII-2. 

I 

ui - 112, j T j  

Figure VII-2 

1 
112 , j 

Internal energy, density, and artificial (viscous) pressure arrays are not needed since 

the flow is incompressible; and therefore there me no changes in density, no changes in 
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energy due to pdV work, and no shocks that would require an artificial viscosity. Velocity 

in two directions and pressure per unit density are the only variables that are needed in 

the equations that describe two-dimensional incompressible fluid flow. 

B. The Equations of Two-Dimensional Incompressible Fluid Flow 

To derive the transport equations of two-dimensional incompressible Eulerian fluid 

flow, we begin with our principles of flux and conservation. Advective flux of mass is again 

equal to density times velocity: 

The total amount of mass moving across a boundary in a given time step is equal to the 

mass flux multiplied by the area of the boundary multiplied by the time step: 

A Mass = FluxAdt . (rn-2) 

Applying this equation along with Eq. (VII-1) to a cell in the mesh gives the following 

expressions for changes in mass due to flux across the left, right, bottom, and top cell 

Walls: 

A Massleft = pui-l/a,j W d y  d t  (VII-3) 

A Massright = - p i + l / % , j w d y  d t  (rn-4) 

(rn-5) A MaSSbottom = p~li , j -1/2 W dx d t  

A Masstop = - p i , j + 1 / 2  W dx dt . (VII-6) 

In these equations, p is the constant value for the density of the fluid and W is the width 

of a cell, its thickness in the third dimension. The change in mass is negative in Eqs. (VII- 

4) and (VII-6) because they represent mass being carried out of the cell by rightward 

velocities through the right cell wall and upward yelocities through the top. 

Mass conservation tells us that the total change in mass is equal to the sum of the 

masses that are fluxed across each of the boundaries: 



For the incompressible Eulerian case, the total mass of a cell remains constant. Therefore, 

A Masstotal = 0 . (VII-8) 

which reduces to 

or 

(VI-9) 

(VII-10) 

(VII-11) 

(VII-12) 

Eq. (VII-12) is the two-dimensional finitedifference equation for Eulerian mass flux 

in an incompressible system, one of the two major equations that will be used in our code. 

It is closely related to the Eulerian one-dimensional mass flux equation, namely 

a P  a P  - + - = o .  at ax 

In two dimensions, Eq. (V-37) becomes 

a p  apu apv -+- +-- -07  at ax a y  

which, assuming a constant p, becomes 

du av 
ax a y  +-=  0 ,  - 

(V-37) 

(VII- 13) 

(VII- 14) 

which is a partial differential representation of Eq. (VII-12). 
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The second major equation that is used to simulate incompressible fluid flow is the 

momentum equation. In a two-dimensional system, this equation becomes two equations, 

one representing vertical momentum and one representing horizontal momentum. Each of 

these equations is solved over a momentum cell that is staggered such that its center exists 

where a velocity is directly represented. Two such momentum cells appear in Fig. VII-3. 

vertical 
momentum cell 

horizontal momentum cell 

Figure VII-3 

Let us consider the case of the horizontal momentum zone, in which momentum is 

in terms of u. Like the mass equation, the momentum equation that is applied to the 

two-dimensional cell is very similar to the onedimensional equation, Eq. (V-38): 

apu apu2 a&+q) - +-=- at ax dX 
(V-38) 

This equation is made up of three terms: the rate of change of momentum ($) , an 

advective term (w) , and a pressure term . These same three types of terms 
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appear in the two-dimensional equation but with several changes made to the advective 

and pressure contributions. 

Advective flux of momentum in two dimensions occurs in much the same manner 

as advective flux of mass. There are four surfaces on a momentum cell across which 

momentum can be carried: the left, right, top, and bottom cell walls. Just as mass flux 

in Eq. (VII-1) was density times velocity, momentum flux across each of the surfaces in 

the momentum cell is momentum density (fluid velocity x mass density) multiplied by 

carrying velocity: 

These advective fluxes are illustrated pictorially in Fig. VII-4. 

(PUV) i + 112, j + 112 

(VII- 15) 

( P U ~  i + 1/2, j - 112 

Figure VII-4 
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As was the case with mass flux, the total amount of momentum moving across a 

boundary in a given time step due to advective flux is equal to the momentum flux 

multiplied by the area of the boundary multiplied by the time step: 

Using this equation to  determine the change in the momentum of a cell i + 1/2,j due to 

the fluxes shown in Fig. VII-4, we obtain 

(VII-17) 

(VII-18) 

(VII-19) 

(VII-20) 

These four equations can be combined to form an equation for the total change in 

momentum due to advection: 

Dividing both sides by the volume of a cell (W dx dy) to generate an expression in terms 

of momentum density, we obtain 

or 

which can be represented in partial differential form as 

apu2 a p v  
ax dY 

(P2)adv = -- - - . (VII-24) 
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In the two-dimensional momentum equation for the horizontal direction, the term 
a& that is analogous to the advective term in Eq. (V-38) ( ax ) is 

or 
dpu2 dpuv 
dX 8Y - 

---- 

The pressure term of Eq. (V-38) is written for two-dimensional incompressible flow 

by first separating it into two components: 

(VII-25) 

The effect of the real pressure ( p )  on momentum in the x-direction in two dimensions is the 

same a s  in one dimension; this term remains in the same form. The viscous pressure term 

in two dimensions, however, is rewritten in terms of a true viscosity. This true viscosity 

parallels artificial viscous pressure in a manner that can be seen by dividing the viscous 

pressure equation into two terms: 

These terms can be rewritten using the equation for viscous pressure, 

4n 3 = Qo Pzi” c (u:-1,2 - Uzi”+l/Z) 

or if negative qy = 0 

or 
,=-QoPcdx( U r  ’dX - U 1  ) , 

which appears in partial-differential form as 
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The’ x-direction term becomes 

and the y-direction term becomes 

When combined, these terms appear as 

- %?x + - dqy = -2- ( p c d x g )  - ; ( p c d x g )  , 
a x  d y  dX 

which can be rewritten in the incompressible case as 

(VII-28) 

(VII-29) 

(VII-30) 

(VII-3 1) 

But the term that is used to represent viscosity in two dimensions is actually 

-..(-+-) d2U d2u , 
3x2 dy2 

where v is a constant known as the KINEMATIC VISCOSITY. The reason that this 

constant is used rather than the qocdx and qocdy values in Eq. (VI-31) is to represent 

the rate of diffusion of momentum in the fluid in an ISOTROPIC manner, a manner that 

does not prefer one direction over another. 

Our use of a real viscous term of this type is not meant to imply that d y  = dx 

but rather to represent diffusion in a way that is not preferential to any direction. The 

constant u in this equation is the simplest manner for representing the physical phenomena 

of viscosity, which parallels the concept of thermometric conductivity used in our equations 

of heat transfer. Both these equations appear as a-coefficient times a second derivative: 

0- d2T and P.(-.-), d2U 3% 
dX2 ax2 dy2 

and both represent the diffusive propagation of a quantity. 
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There are more complicated methods for simulating viscosity which attempt to 

preserve the isotropy of the diffusion terms while reconciling the dispaity between the 

q equation and the diffusive terms. These methods are beyond the scope of this work, 

however, and have never been fully successful. Therefore we will use a constant u. 

Now that terms for advective ffw and pressure (now pressure plus diffusion) have 

been determined, a two-dimensional equation for Eulerian change in momentum in the 

x-direction can be written 

-- adv term + pressure term = 0 (VII-32) at 

dpu dpu2 dpuv ap a2u 8% - at +-+- ax a y  + - - p u ( - + - )  ax dx2 dy2 = o .  

Because density is constant in the incompressible case, we divide by p to obtain 

--+-+-- au au2 auv --E+.(-+-), d2U a2u 
at ax a y  ax 3x2 ay2 

(VII-33) 

(VII-34) 

where P is equal to p / p .  Similarly, the equation for change in momentum in the y-direction 

is 

(VII-35) 

These two equations, along with the mass equation, Eq. (VII-14) [in finite-difference form 

Eq. (VII-12)] make up yet another form of the Navier-Stokes Equations and form our 

mathematical model of two-dimensional Eulerian incompressible fluid flow. 

C. Solving Two-Dimensional Fluid-Flow Equations 

To solve the equations of two-dimensional incompressible fluid flow, we will make use 

of a method that combines both explicit and implicit solving techniques. This method is 

used because of a stability condition that is present in the pressure term in the momentum 

equation. 

110 



This stability condition can be explained by examining the general equation for sound 

speed. For an ADIABATIC system, meaning a system that contains no processes that 

either absorb or generate heat, this equation is 

It can be manipulated to obtain 

dp  = c2dp. 

The pressure term for the momentum equation L* 
( P  4 

1 a p  c2ap 
p a x  p a x '  
-- = -- 

(VII-36) 

(VII-37) 

can then be rewritten as 

(VII-38) 

In an incompressible system p is a constant, meaning that = 0. But, pressure 

is not a constant, indicating that 2 # 0. We see then that c2 --$ 00, but the Courant 

condition states that 

(VII-39) 

indicating that our system will be unstable if pressures are computed explicitly. 

Our onedimensional fluid simulations have shown, however, that the advective terms 

of the momentum equation can be solved explicitly without becoming unstable, and the 

viscous terms are limited only by the diffusional stability condition: 

udt  1 < -  dx2 2 
udt  1 < - .  dy2 2 

- 

- 

(VII-40) 

(VII-41) 

while the pressure contributions in the momentum equations must be computed 

implicitly, then, the rest of the terms can be computed faster using an explicit method. 

While it is conceivable that all terms of these equations can be computed using an implicit 

method, a better technique is to calculate the advective and viscous terms using an explicit 

solver, then calculate the change in pressures with an implicit solver. 
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This calculation is done by first grouping together the advective and viscous terms of 

the momentum equations. Equations (VII-34) and (VII-35) become 

- =  d U  d U 2  (---"""+"G+w))- d 2 U  d2u 
at dx d y  

at dx d y  
d V  duv dv2 

dP 

Using the finite-difference approximation of and g, we obtain 

d 2 U  d 2 U  dP n U .  n+l . = u ~ + ~ / ~ , ~  + d t  2+1/2,3 

duv dv2 
n+l n + d t  (--- - 

' i , j + 1 / 2  = ' i , j+1/2  ax d y  

We now define quantities ?i and ij such that 

- +&(-E- d X  

2,3+1/2 = 2,3+1/2 + dt -n+l - v n .  v. . 

(VII-42) 

(VII-43) 

(VII-44) 

dP 
d X 2  dY 

+ I/ (e + $)) - dt- . (VII-45) 

auv 8% d2v 

3% d2v 
- dY + (a22 + @)) 
E+V(G+@>) dY - 

These terms represent the horizontal and vertical velocities at the next time step, barring 

any contribution made by pressure. They allow us to rewrite our momentum equations as 

(VII-46) 
-n+l dP 

uY:l)2,j = ui+1/2 , j  - dt- dX 
-n+l dP 

' i , j+1/2 dY 
(VII-47) n f l  

= v ~ , ~ + ~ / ~  - dt- . 
In finite-difference form, .ti and ij appear as 

) En+l 
2+1/2,j = ui+1/2,j dY 

n - d t  [ (~?+1,;; u ? , j )  + ( ( u v ) i + 1 / 2 , j + 1 / 2  - ( ~ u ) i + 1 / 2 , j - 1 / 2  

)I ui+1/2, j+1+ ui+1/2 , j -1-  2 ~ i + 1 / 2 , j  

dY2 
(VII-48) 

%+3/2,j + u i - 1 / 2 , j  - 2ui+1/2,j 

d x 2  

(VII-49) 
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In these equations the advective terms can again be calculated using either a donor- 

cell or cell-centered technique. In this case, a cell-centered approach is allowable because 

the viscous term prevents numerical instability in a manner described in Chapter VI. This 

approach results in a code that is able to resolve delicate physical phenomena that occur 

at low viscosities. 

The KARMAN VORTEX STmET,  a type of turbulent fluid flow, is one such 

phenomenon. This type of flow can be examined by simulating a system in which fluid 

flows in from the top and bottom thirds of the left wall and out through the entire right 

wall. At low viscosities, this system will form a fluctuating stream called a vortex street. 

This phenomenon will be discussed in more detail later in this chapter. 

Use of the donor-cell technique results in a code that is able to handle more violent 

phenomena, such as the rushing of fluid over a stationary block. It allows for systems 

at higher velocities and with more change in velocity to be simulated without becoming 

numerically unstable but loses much of the precision of the cell-centered technique. Because 

the Karman vortex street will not evolve with this imprecision, the cell-centered technique 

is used in the examples in this chapter. 

Using the appropriate technique to express the advective terms, twc-dimensional 

arrays of fi and ij are computed using an explicit method. The resulting arrays are then used 

to compute the velocities and pressures implicitly. The equations that are implicitly solved 

are the mass equation (VII-12) and finitedifference versions of Eqs. (VII-46) and (VII-47): 

(VII-50) 

(VII-51) 
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The function that converges to zero in the iterative solution is the mass equation. This 

convergence is achieved by defining a quantity Di7j such that it is the difference between 

the momentum equation and its desired value of zero: 

Because fi and 5 are calculated before any implicit calculations are done, they do not 

change during the iterations. The vertical and horizontal velocities in our definition of D 

are therefore functions only of pressures, as shown in Eqs. (VI-46) and (VI-47). Newton's 

method [Eq. (111-24)J can therefore be applied to the solution of the pressures with D(P)  

replacing f ( x ) .  The resulting equation is 

( z ) i , j  is computed using the chain rule, which says that for a function 

y = F(a(x) ,  b(x) c(x) . . .) 
d y  dFda dFdb  dF dc ----+--+ - --... 
dx da dx db dx dc dx 

In our case this means 

(VII-52) 

(VII-53) 

(VII- 54) 

These partial-differential terms can be rewritten using Eqs. (VII-50) and (VII-51) and our 

definition of D: 

which reduces to  

(E) dP i j  2 dx (2) dx + (2) (2)+ 
(VII-55) 

(VII-56) 
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Consequently, our equation for the implicit updating of pressures is 

where 
A 1 
PO!= 

2dt (& + &) 

(VII-57) 

(VII-58) 

Through the use of this equation along with the fi and a equations [Eqs. (VII- 

48) and (VII-49)], two-dimensional incompressible Eulerian fluid flow can be accurately 

represented. These equations make up a method that uses both explicit and implicit 

solving techniques to simulate the motion of an incompressible fluid computationdy. 

D. Computational Implementation of Equations 

Our program is once again structured in five major sections: setup, checks and 

incrementations, boundary conditions, variable updating, and output; but the interaction 

of these sections is slightly different from that of previous codes. Our two-dimensional 

code is configured as in Fig. VII-5. 

Setup 

1 InitialB.C. I 

Figure VII-5 
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Notice that in this figure, three Merent types of boundary conditions appear, along with 

an explicit/implicit solver. Each of these will be discussed, but first let us examine the 

setup routine. 

This procedure includes the same time variables present in our previous finite- 

difference codes (dt, pt, etc.) and the following additional variables: 

ibar and jbar - - the number of interior zones in the x- and y-directions 

den  and ylen - - lengths in the x and y-directions 

dx and dy - - - the horizontal and vertical lengths of a zone 

m u  - - - - - - - the kinematic viscosity 

P, u and v - - - -two-dimensional arrays of pressures and velocities 

PO, u0, and v0--the intial values of the P, u, and v arrays 
1 beta- - - - - - - - 

2d t (  &+*) P -  
ur, ul------ the fluid velocities normal to the right and left walls 

vt, vb - - _ _ - -  the fluid velocities normal to the top and bottom walls 

Dtest ------ the accuracy to which Di,j should converge 

In certain cases, output may be required at regular intervals beginning after a certain time. 

(Every 10 seconds after 100 seconds have elapsed, for example.) To do this, an optional 

variable btime can be used to represent the time that the program should begin to call 

the output procedure. The check for output would then become an “and” statement that 

checks both for pt i ptime and st i btime. 

The setup procedure assigns alI read in constants and calculate d x ,  dy, and beta. 

Velocities and pressures should be set to their initial values. Dtest has the dimensions of 

s-l, a velocity divided by a distance, and shouldbe assigned a value of a characteristic 

velocity of the system multiplied by a value between 1/100 and 1/1000 and divided by a 

length of a cell. For example, for a system where the major inflow of fluid was from the 

left, 0.005 * ul/dx would be a reasonable value to assign to Dtest. 
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Optionally, a perturbation can be added to the initialization routine, which allows for 

turbulent phenomena such as the Karman vortex street to develop more rapidly in our 

simulations. A perturbation is added by assigning a pinwheel of velocities surrounding 

a point somewhere near the center of the mesh i = i/3, j = j/2, for example. In this 

vicinity, velocities should be assigned: 

- 

(VI-59) 

(VII-60) 

(VII-61) 

(VII-62) 

where perturb is a velocity typical to the system. For example, in a system where the 

major i d o w  of fluid is at the left wall, perturb could be equal to ul. 

Flow velocities at the cell wall must be assigned so that the amount of inward flow is 

equal to the outward flow. That is 

or 

(VII-63) 

(VII-64) 

where Cuout and Cvout are the sums of the velocities of all outward flowing zones and 

CUin and Cui, are the sums of the velocities of all inward flowing zones. This constraint 

is necessary to ensure the conservation of mass in an incompressible system and must be 

applied according to the system that one wishes to represent. For example, if velocities at 

the top and bottom are set to zero, inflow of fluid is fcom the bottom and top thirds of 

the left wall, and outflow occurs all along the left wall, ur would be equal to Qul. 

These velocities are assigned at the wall in an initial boundary condition procedure 

that is called only once during the program. This procedure assigns the ur value to the 
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appropriate zones in the u(0,j) array, ul to the u (ibar,O) array, vb to v(i,O), and vt to 

the v(i,jbar) array. In the Karman vortex street problem, for example, ur, vt ,  and vb are 

assigned to all the elements of their respective arrays, and ul is assigned over the range 

u(0,l) to u(O,jbar/3) and u(Ojbar-(jbar/3)) to u(0,jbar). A value of zero is assigned from 

4 + 1 to j - - 1. Note that a value j - 4 is used rather than % to preserve the symmetry 

of the system in cases when 7 is not divisible by three. The initial boundary need not 

assign pressures for the ghost zones, however, as the pressure values in the ghost zones are 

never used. 

The initial boundary condition routine that sets flow velocities in and out of the 

system is contrasted with the tangential boundary condition routine, which is called at 

the beginning of each time cycle. This routine sets the flow velocities in the ghost zones 

that run parallel to the walls of the system: o at the left and right, and u at the top 

and bottom. These velocities are usually assigned using a FREESLIP METHOD, which 

assumes that fluid running parallel to the walls experiences no friction with that surface. 

This sort of boundary condition is used in situations where the layer of fluid that is affected 

by ji-iction with the wall is much smaller than a cell. In these cases the effect of friction is 

negligible, allowing it to be approximated through the use of tangential velocities outside 

the walls equal to the tangential velocities inside the walls. This condition is expressed in 

the following equations: 

u(i, 0) = u(i, 1) 

u(i, jbar + 1) = u(i, jbar) 

.(O,j) = 4Lj) 
v(ibar + 1,j) = v(ibar,j) 

(VII-65) 

(VII-66) 

(VII-67) 

(VII-68) 

which make up the tangential boundary condition routine that must be computed every 

time cycle. 
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There is also a third type of boundary condition procedure, the outflow boundary 

condition routine. This routine is called at every implicit iteration to update the velocities 

at any wall at which outflow occurs. Its purpose is to assign outflow velocities that 

accurately represent the outflow velocities of the system, while maintaining the balance 

between inward and outward flow as shown in Eq. (VII-64). 

In order to accurately represent the physical system, the outward flow at a given cell 

wall must be proportional to  the outward flow before that wall. 'That is 

UoutT+l/2,j c( "-%-1/2,j 

Vouti,1/2 c( vi,3/2 , 
while also maintaining Eq. (VII-64). 

By specializing to the case where there is no inward or outward flow at the top and 

bottom walls, Eq. (VII-64) can be written as 

or 

(VII-69) 

(VII-70) Cu~+1/2 , j  = C u 1 / 2 j  * 

We can now derive an expression for u ; + ~ / ~ , ~ .  As u ; + ~ / ~ , ~  is proportional to 

where A is a constant. 

Substituting this equation into Eq. (VII-70) we obtain 

or 

(VII-71) 

(VII-72) 

(VII-73) 
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We then substitute this value of A into Eq. (VII-71) to obtain an expression for outward 

boundary conditions for the Karman vortex street problem: 

(VII- 74) 

This equation is applied to  the array of right fictitious zones at every implicit iteration. It 

describes the outward boundary conditions for the Karman vortex street problem. 

Returning to the question of solving our equations using a partially-implicit method, 

we see that the code that must be written has been described to a large extent. The variable 

updating portion of the program is divided up into two sections: an explicit routine that 

computes fi and V, and an implicit routine that computes pressures and horizontal and 

vertical velocities. 

The explicit routine is simply a double loop that computes ti and V values for all cell 

and are calculated only once edges except for those at the boundaries of the system; 

each time step, using Eqs. (VII-48) and (VII-49). 

The implicit routine is similar to the solver used in Chapter 111. This section consists 

of a loop that iterates until the values of D have converged to within Dtest. At the 

beginning of each iteration, a variable Dmax is assigned a value of zero. The program 

then moves into a double loop that calculates Di,j for every point within the mesh and 

stores the largest absolute value for Di,j as Dmax. Pressures are reassigned according to 

Eq. (VII-57), velocities are updated, and outflow boundary conditions are implemented. 

A test is then made between Dmax and Dtest: if D has converged to within Dtest, the 

program moves to the next time step; if D has not yet converged, the loop iterates. This 

implicit loop should not be repeated more than about 100 times. An example for the 

coding of this loop is the following: 

times = 0 

100 Dmax = 0 

c.. compute new D’s 
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do 200 i = 1, ibar 

do 200 j = 1, jbar 

D(i, j) = (u(i, j)-u(i-1, j))/dx + (v(i, j)-v(i, j-l))/dy 

if (abs(D(i, j)).gt.Dmax) Dmax = abs(D(i, j)) 

200 continue 

c.. compute P’s 

do 300 i = 1, ibar 

do 300 j = 1, jbm 

P(i, j) = P(i, j) - (beta*D(i, j)) 

300 continue 

c.. compute u’s and v’s 

do 300 i = 1, ibar-1 

do 300 j = 1, jbar 

u(i, j) = ubar(i, j) + (dt/dx)*(P(i, j)-P(i+l, j)) 

300 continue 

do 400 i = 1, ibar 

do 400 j = 1, jbar-1 

v(i, j) = vbar(i, j) + (dt/dy)*(P(i, j)-P(i, j+l)) 

400 continue 

times = times + 1 

c.. reset boundary conditions 

total = 0 

do 500 j=1, jbar 

total = u(ibar-1, j) . , total 

500 continue 

do 600 j=1, jbar 

u(ibar, j) = u(ibar-1, j)*(2./3.)*(jbar*d/total) 
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600 continue 

if ((Dmax.lt.Dtest).or.(times.gt.lOO)) goto 1000 

goto 100 

1000 return 

end 

The program should contain an output routine that represents the system in a way that 

is meaningful to the user. One useful output technique is the plotting of STmAMLINES, 

lines that indicate the path along which the fluid is flowing. These are determined by 

examining the direction of the motion of an arbitrary point in the fluid. Consider the 

following case: 

Figure VII-6 

In this diagram, d3  represents the displacement of the fluid at a point i j  over a time dt .  

This vector is made up of two components, d x  and dy. The values of d x  and d y  are the 

horizontal and vertical velocities multiplied by the time step: 

d x  = u d t  

d y = v d t .  
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A function +(x,y) can be deked such that it is constant along the motion of the 

fluid. Along d 3 ,  then, 

d $ = O .  

Returning to the mathematical identity expressed in Eq. (VII-53), we see that 

(VII-77) 

(VII-78) 

Substituting values from Eqs. (VII-75), (VII-76), and (VII-77) this equation becomes 

(VII-79) 

or 

and 

o=-u+-v. a+ a+ 
ax d y  

To solve this equation for 2 and $!$, we substitute in the following values: 

(VII-80) 

where A and B are new variables. Equation (VII-80) then becomes 

-A(uv) + B(uv) = 0 

or 

A = B .  

If we choose A = B = 1, Eqs. (VII-81) and (VII-82) become 

and 

-V - -- 
dX 

= U .  
8.111 
8Y 
- 

(VII-8 1) 

(VII-82) 

(VII-83) 

(VII-84) 

(VII-85) 

(VII-86) 
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By using Eq. (VII-85) in the mass equation (VI1-14), we obtain 

-(-)+;(-g)=O a+ 
ax dy 

= o .  a2+ a2+ 
dxdy dxdy 

(VII-87) 

(VII-88) 

This equation indicates that if either of Eqs. (VII-85) or (VII-86) is used to compute $ 

over a system that satisfies the Eulerian mass equation, the other one will be automatically 

satisfied. Values of +, as described by either Eq. (VII-85) or Eq. (VII-86), are constant 

along the direction of fluid flow. A contour plot of the two-dimensional array of @'s will 

therefore indicate the shape of the flow in the system. This array is numerically calculated 

by using + values that exist at the cell corners: 

(VII-89) 

Because velocities at the bottom cell wall are constant and therefore define a 

streamline, psi's along this boundary can all be set to a constant, 0 for example. The rest 

of the psi array can be calculated using the finitedifference approximation of Eq. (VII-86), 

nainely 

or 

+i+1/2,j+1/2 

In code form this equation becomes 

(VII-90) 

(VII-91) 

psi(i,j) = psi(i,j-1) + dy * u(i,j) . (VII-92) 

Lines of constant psi can be plotted by using a contour plot routine, which will result 

in graphs that indicate the motion of the fluid at any given time step. These graphs use 

the reference frame where the obstacle is stationary but can be placed in the reference 

kame of the fluid by calculating psi as 

psi(ij) = psi(i,j-1) + dy * (u(ij) -ur) . (VII-93) 
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Contour plots of + in both reference frames appear in the results portion of this chapter. 

The output procedure is the last section that must be written in our incompressible 

two-dimensional Eulerian fluid-flow code. This code is structured as was shown in Fig. VII- 

5. A version of this code that includes streamlines can be used to examine the Karman 

vortex street problem, generating results such as appear below. 

E. Simulation of the Karman Vortex Street 

There axe several different cases that can be examined using a two-dimensional fluid 

code. By varying the dimensions of the object, the speed of the flow, and the viscosity 

of the fluid, flow at various REYNOLDS NUMBERS can be examined. The Reynolds 

number is a dimensionless quantity that measures the ratio of advective effects to viscous 

effects in a system. For the Karman Vortex Street problem, it is calculated as 

hobsum 
U 

Re = , (VII-94) 

where hobs is the height of the obstacle, v is the viscosity of the fluid, and u is the velocity 

of the fluid at a point far away from the obstacle. In our case 

U m M U T .  (VII- 95) 

As the Reynolds number increases, the system is likely to become more and more turbulent. 

At low Reynolds numbers (numbers lower than about 4), the flow is steady and exhibits 

no flow separation. This behavior can be seen in Fig. VII-7 which is taken at a time of 25 

(s) using the following parameters: xlen = 50 (cm), ylen 15 (cm), ibar= 50, jbar = 30, anu 

= 1.25 (cm2/s), ul = 1.5 (cm/s), dt = 0.1 (s), and PO, u0, and v0 are all  0. The object 

is 5 (cm) wide, taking up the middle third of the left wall. This system has a Reynolds 

number of 4. 
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Streamlines at time 25 
Reynolds Number = 4 

Figure VII-7 

Note that in this simulation dx is not equal to dy; this inequality demonstrates the fact 

that these quantities need not be equal for accurate results to be obtained. 

At slightly higher Reynolds numbers (numbers above 4 to about 40), a pair of 

VORTICES form behind the object. These are areas where fluid is not moving along 

with the main flow, but rather circling behind the object. At these Reynolds numbers, the 

direction of the flow in some areas behind the object is opposite to that of the main flow 

stream. A flow containing vortices is illustrated in Fig. VII-8, which is generated using the 

same parameters as Fig. VII-7 except for m u  which is 0.2 (cm/s2). 

Streamlines at time 25 
Reynolds Number = 25 

Figure VII-8 
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At Reynolds numbers between 40-500, the vortices become larger and begin to  move 

away from the object as is illustrated in Fig. VII-9 (mu = 0.02; all  other parameters are 

the same as in the previous graph). 

Streamlines at time 25 
Reynolds Number = 250 

Figure VII-9 

Notice that in this graph, the vortices are asymmetric. In nature, this asymmetry is 

initiated by the presence of miniature “flaws” in the fluid. Numerically, this asymmetry is 

a consequence of the perturbation that was added in the setup procedure. 

- The vortices move away from the object one‘at a time in an alternating fashion, 

creating a fluctuating stream, the K m m  vortex street. Figure VII-10 shows the same 

system as Fig. VII-9 but at a later time, when the Karman vortex street has has time to 

develop. 

Streamlines at time 50 
Reynolds Number = 250 

Figure VII-10 
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Note that the vortices that are shed from the object move downstream to the right with 

the main fluid flow, and cannot be seen in this graph. 

Figure VII-11 shows a fully developed street at a time of 100 (s). Other parameters are 

the same as in the previous graphs, except for jbar, which has been lowered to 15 in order 

to demonstrate that the vortex street can be simulated at relatively coarse resolutions. 

Streamlines at time 100 
Reynolds Number = 250 

Figure VII-11 

- The vortex street can be better seen by placing the streamlines in the reference frame 

of the fluid, as if the object were moving and the fluid were stationary. This approach 

results in graphs such as Fig. VII-12. 

Streamlines at time 100 
Reynolds Number = 250 

uref = 1 .O (fluid reference frame) 

Figure VII-12 
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The fluctuations in the Karman vortex street occur at regular periods, as can be seen 

in the next series of graphs, obtained using the same parameters as the previous graph. 

Graphs appear in the reference frame of the object (uref = 0.). 

Streamlines at time 100 
Reynolds Number = 250 

Figure VII-13 

Streamlines at time 106.25 
Reynolds Number = 250 

Figure VII-14 

Streamlines at time 112.5 
Reynolds Number = 250 

Figure VII-15 

Streamlines at time 11 8.25 
Reynolds Number = 250 

Figure VII-16 

Streamlines at time 125 
Reynolds Number = 250 

. Figure VII-17 
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Analysis of these graphs indicates that the stream is fluctuating with a period of roughly 

15 seconds. 

We can use this period to calculate the STROUHAL NUMBER, which relates the 

period of the stream to the size of the object and the rate of the flow. The Strouhal 

number is a dimensionless quantity that is calculated as 

h o b s  

UcoTstreet 
St = , (VII-96) 

where hobs  is the height of the obstacle, uco is the velocity of the fluid at a point far away 

(in our case uT), and rStreet is the period of one oscillation. 

Experimentally, the Strouhal number in a Karman vortex street has been observed to 

be about 0.20. For our computational system, we calculate a Strouhal number of about 

0.33. This difference in values can be explained by examining the differences between the 

laboratory experiments and our computational system. 

In the laboratory, the Strouhal number is calculated by sending flow over a cylinder, 

whereas the computational results are obtained by blocking off the flow in a portion of 

a boundary. These two methods M e r  in that the fluid flow around the computational 

“object)’ moves parallel to the main flow, whereas the fluid flow around the laboratory 

cylinder moves outwards around the cylinder, spreading out before finally becoming parallel 

to the main fluid flow. Consequently, the object simulated computationally corresponds 

with a smaller experimental object. This effect is illustrated in Fig. VI-18. 

Experimental Computational 
Cylinder Object 

Figure VII-18 
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Our experimental Strouhal number is then smaller than the number calculated 

numerically. Assuming a ratio of about 2:3 between our real and computational objects, 

our computational Strouhal number would then relate to a experimental number of about 

0.22, a value consistent with observed data. 

At very high Reynolds numbers (above about 500)) miniature turbulent fluctuations 

occur within the vortex street and begin to drown out the fluctuating stream itself. Our 

computational results seem to simulate this case ( m u  = 0.005): 

Streamlines at time 100 
Reynolds Number = 1000 

Figure VII-19 

What we are actually observing in this graph, however, is not the turbulent fluctuations 

that drown out the vortex street, but rather a numerical instability that results from a 

violation of the diffusional stability condition. Viscosity has been reduced to a level at 

which it no longer counteracts the negative diffusion intrinsic to the centered difference 

momentum equation, and the solution becomes full of random highs and lows. This 

instability can be seen clearly by placing the graph in the reference frame of the fluid. 
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Streamlines at time 100 
Reynolds Number = 1000 

uref = 1 .O (fluid reference frame) 

Figure VII-20 

We have seen that the Karman vortex street can be modeled computationally and 

have discussed some of the theory associated with this phenomenon. We have also 

examined some of the inaccuracies that can result from our numerical approximations. 

In Chapter VIII, we will apply our two-dimensional fluid code to the simulation of more 

complicated systems, examining the modeling of obstacles placed within the flow passage 

itself and the simulation of heat flow. 
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VIII. ADDITIONS TO TWO-DIMENSIONAL FLUID CODE 

A. Flow Regions with Obstacles 

In this chapter we will be discussing several additional problems that can be modeled 

using a two-dimensional fluid flow code. The first of these problems is one in which an 

OBSTACLE is present in the flow region. For our purposes, we will define an obstacle as 

an object that prevents fluid from flowing through a specified region. Unlike the object 

simulated by the use of boundary conditions in the K m a n  vortex street problem, the 

obstacles that we will be examining in this section are found within the mesh and can be 

placed adjacent to  the walls or anywhere in the flow region. 

Obstacles are simulated by creating a boundary that exists within the flow region. 

For purposes of simplicity, we will limit the shape of our obstacles to be rectangles, but in 

principle, obstacles can be of many different shapes. A diagram of a rectangular obstacle 

appears in Fig. VIII-1: 

jobt 

jobb 
iobl iobr 

Figure VIII-1 

133 



In this figure, iobl and iobr are the i values at the left and right of the obstacle, and 

jobb and jobt are the j values at the bottom and top of the obstacle. These can be chosen 

to have values anywhere within the mesh, including adjacent to the walls. 

Over the walls of the subregion described by these four values, the velocities normal 

to the obstacle are set to zero, and the tangential velocities are set according to the desired 

boundary conditions, for example, fi-ee slip boundary conditions. Values are assigned in 

an obstacle routine that is called at every implicit iteration. 

This routine is made up of two main parts, the first of which sets the normal velocities 

to zero. This means that uiobl-1/2,j and uiobr+1/2,j are set to zero from jobb to jobt, and 

vi,jobb-1/2 and 'u]i,jobt+l/2 are set to zero fi-om iobl to iobr. In this is done with two loops, 

which appear as follows: 

do 100 j=jobbjobt 

u(iob1-1,j) = 0 

u(iobr,j) = 0 

100 continue 

do 200 i=iobl,iobr 

v(ijobb-1) = 0 

v(ijobt) = 0 

200 continue 

Note that in this code, u(iob1-lj) and v(i,jobbl) are set to zero rather than u(iob1,j) and 

v(i,jobb), because velocities exist at the right aqd top of the cells, whereas the normal 

velocities at the bottom and left of the obstacle are at the bottom and left of the cells. 

If free-slip boundary conditions are desired, tangential velocities at the obstacle walls 

The should be set to the value of the tangential velocities of the surrounding flow. 
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assignments are similx to those of the wall tangential boundary conditions described in 

the previous chapter. In this case 

and 

from jobb + 1/2 to jobt - 1/2, and 

%+1/2,jobb = %+1/2,jobb-l 

and 

(VIII-2) 

(VIII-3) 

from i obr+ l /2  to iobZ-l/2* 

Tangential velocities are not set to zero at the corner of the object because they would 

act as normal velocities at these points. Equations (VIII-1) through (VIII-4) appear in 

code form as: 

do 100 j=jobb,jobt-1 

v(iob1,j) = v(iob1-lj) 

v(iobrj) = v(iobr+lj) 

100 continue 

do 200 i=iobl,iobr-1 

u(i,jobb) = u(i,jobb-1) 

u(i,jobt) = u(ijobtf1) 

200 continue 

Note that in this code, the loops run from jobb to jobt-1 and iobl to iobr-1, again due to 

the use of a staggered mesh with u's and v's that exist at the right and top cell walls. 

With these two elements, the setting of the normal velocities to zero and the use of 

ftee slip boundary conditions, a routine can be written that creates a rectangulx obstacle 
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in any subregion of the mesh. Multiple objects can be simulated by multiple calls to the 

obstacle routine, with jobbl, jobtl, iobrl, and iobll specifying the dimensions of the first 

obstacle; jobb2, jobt2, iobr2, and iobl2 specifying the dimensions of the second obstacle; 

etc. These calls must be made at every implicit iteration, resulting in a two-dimensional 

fluid code as illustrated in Fig. VIII-2. 

Start 

I Setup 

Initial B.C. 

Obstacle 2 (iobb 2, jobt 2...) *I 

A End 1 

D*a% < Dte5t 

Figure VIII-2 

Our program can now be used to simulate a number of interesting situations. This 

fist series of plots uses the following parameters: d e n  = 40 (cm) ylen = 10 (cm), ibair = 

40, jbar = 10, and ul = ur = 1.0 (cm/s). The obstacle parameters are jobb = 1, jobt = 

5, iobl =11, and iobr = 15. The dimensions of the obstacle are 5 (cm) x 5 (cm), and it is 

placed 10 cm down the flow passage. 
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Figure VIII-3 is taken at a time of 5 (s) with a viscosity of 1 (cm2/s). This results in 

a Reynolds number of 5. 

Streamlines at time 5 
Reynolds Number = 5 

Figure VIII-3 

If the viscosity is reduced to 0.1, so that the Reynolds number is 50, a vortex forms 

behind the object. This is illustrated in Figs. VIII-4 through VIII-6. 

Streamlines at time 5 
Reynolds Number = 50 

Figure VIII-4 
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Streamlines at time 10 
Reynolds Number = 50 

Figure VIII-5 

Streamlines at time 15 
Reynolds Number = 50 

Figure VIII-6 
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In these last three graphs, we can see the presence of a numerical instability that 

occurs when fluid accelerates. A careful truncation error analysis indicates that the finite- 

difference approximation of the momentum equation has a negative diffusion term that 

is associated with the acceleration of the fluid. When the fluid is accelerating, as is the 

case when the fluid moves over the object from the right, this negative diffusion results in 

a numerically unstable solution. We can see this instability in the jagged streamlines in 

this portion of the graph. When the fluid is decelerating, as is the case as the fluid moves 

away from the object into the open flow channel, there is an additional positive diffusion. 

Hence, this portion of the graph remains numerically stable. 

As viscosity is again lowered, the contrast between these stable and unstable regions 

becomes clearer. Figure VIII-7 illustrates the results of a simulation with a viscosity of 

0.02 (cm2/s) 

Streamlines at time 15 
Reynolds Number = 250 

Figure VIII-7 

B. Heat Transfer 

The second topic in our study of additions to a two-dimensional incompressible fluid 

flow code is the modeling of heat traasfer. This modeling requires the addition of a new 
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array of temperatures that exists at the cell centers, and must be declared and initialized 

in the setup procedure. The resulting mesh is pictured in Fig. VIII-8. 

Figure VIII-8 

The equation that describes the evolution of temperature is similar to the two- 

dimensional momentum equation, Eq. (VII-34). The two-dimensional temperature 

equation is 

aT d u T  d v T  d2T  d 2 T  -+- (VIII-5) 

where 0 is once again the thermometric conductivity of the material. 

This equation is made up of three major types of terms: the explicit change in 

temperature with time (g)) the advective terms in both directions 2 ) F) , and 

the diffusion term (e CT T+T c)) . These terms are the result of an analysis similar to 

that used to  derive the two-dimensional momentum equation in Chapter VII. 

( 

In finite-difference form, Eq. (VIII-5) appears as 
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or 

Temperatures at cell walls are calculated through the use of the donor-cell method, by 

creating two two-dimensional arrays: idnr and jdnr. These arrays are made up of integers 

that are calculated at the cell walls. idnr is calculated from the u velocities at position 

i + 1 / 2 , j  and is zero if the flow is from left to right and 1 if the flow is from right to 

left. jdnr is calculated from the v velocities at position i, j + 1/2 and is zero if the flow is 

upwards and 1 if the flow is downwards. These two arrays are then used in a double lookup 

fashion, as was done in Chapter V. The advective terms of Eq. (VIII-5), thus appear as 

( U( i ,j ) *T( i+idnr (iJ) J ) - u(i- 1, j ) *T( i- 1 + i b (  i- 1 j ) ,j) ) /& duT 
d X  
-= 

-- dvT - (v(i,j)*T(i,j+jdnr(i,j)) - v(iJ-1)*T(i,j-l+jdnr(i7j-l)) )/dy . 
8Y 

Equation (VIII-7) is implemented in a double loop just before the the explicit calculation 

of fi and 6. The addition of this double loop is the first major modification that must be 

made to our code to simulate the transfer of heat. 

The second major modification is the addition of a buoyancy term to the 6 equation. 

This term represents the upward acceleration created by a decrease in density due to the 

heating of the fluid. This upward acceleration is'equal to the gravitational force on the 

system multiplied by the ratio of the density of the fluid to a given reference density: 

, 

Pi,j 
--9 , 

PO 
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where pi,j is the density at a point i, j ,  po is the base density of the fluid, and g is the gravity 

of the system, defined as negative in the downward direction. On Earth g = -9.8 m/s2. 

This use of a change in density creates an apparent inconsistency between the 

buoyancy term and the the rest of the terms in the vertical momentum equation. The 

vertical momentum equation now appears as 

-+- P (VIII-8) 
av auv + - = - E + v ( a a , + _ ) - - g .  av2 d2V 

ay ax2  ady2 Po at ax ay 

In this equation, all terms assume constant density except the buoyancy term. This 

approximation is called the BOUSSINESQ APPROXIMATION for natural convection 

problems. It can be used in cases where the driving forces for velocity are the result of 

small changes in density. Here, the buoyancy term is O(dp) while the effect of changing 

density on the other terms in O(dp2). Since dp is very small, dp2 is negligible. For the 

buoyancy term, the following analysis is used to express the driving force in terms of 

temper at ure . 

We begin with Eq. (IV-23): 

P = (7 - 1)pl .  (IV-23) 

and rewrite I ,  the internal energy, as the temperature times the specific heat, TC,, to 

obtain 

P = (7 - l)pC,T 

or, solving for p 

(VIII-9) 

(VIII-10) 

Pressure in this equation is actually made up of two different pressures: the reference 

pressure, or nominal pressure of the surroundings, and the dynamic pressure, which changes 

according to the motion of the fluid. Because our pressure terms have only dealt with the 

change in pressure, our p from Chapter VI1 was essentially P d y n ,  the dynamic pressure. In 

Eq. (VIII-10) p is no longer pdyn but the sum of the nominal and dynamic pressures: 
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Substituting this term into Eq. (VII-10) gives us 

(VIII-12) 

But the nominal pressure of the system is much larger than the dynamic pressure, so we 

can ignore Pdgn in this equation and write 

(VIII-13) 

. The substitution of this equation into our definition of the buoyancy term yields 

(VIII- 14) 

where TO is the reference temperature of the system. Assuming that the nominal pressure 

is unchanging, this equation becomes 

P TO 
-g=gl,- Po 

If we define a variable S such that 

then 

T=To(l+S); 

and the buoyancy term becomes 
9 PS -=- 

Po 1 + 6 '  
By expanding the & term we obtain a series 

1 - = 1 - s+s2 - s3. 
1+S 

(VIII-15) 

(VIII-16) 

(VIII- 17) 

(VIII- 18) 

Ignoring the terms of second and higher order, we can use this expansion to  write our 

buoyancy term as 

E M [l- (T;OTo)] 9 .  
PO 

(VIII-19) 
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If we look at this term in conjunction with the pressure term and expand pressure to 

represent both the nominal and dynamic elements we have 

To maintain atmospheric equilibrium, the nominal pressure must satisfy the equation 

where C is some constant. Equation (VIII-20) can also be written as 

Pn C - = g y + - .  
Po Po 

We can use this value in our reference pressure term to obtain 

(VIII-21) 

(VIII-22) 

This g cancels with the g from the buoyancy equation, leaving 

dP T-To 
TO -9  -- 

aY 
If we choose TO to be 273"K, then the buoyancy term becomes 

where T is in expressed in "C. This is more often written as 

where /3 = $ 
term: 

A. Our equation for 6 is then equal to the old 6 modified by a buoyancy 

ebuoy = enoheat - gPTdt , (VIII-23) 

where g is negative for a downwad force of gravity. 
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The third major modification that must be made to simulate the effect of heat in a two- 

dimensional incompressible fluid is the implementation of thermal boundary conditions. 

These conditions should be calculated once per time cycle in a procedure that is called after 

the tangential boundary conditions. There are two types of thermal boundary conditions 

that we will use: INSULATED and PFESCFUBED. 

Insulated means that there is no heat fluxed across the wall in question. This situation 

occurs when there is no temperature gradient across the walk 

Toutside = xnside - (VIII-24) 

Insulated boundaries are contrasted with prescribed boundary conditions, which were 

used in the one-dimensional heat flow problem. For this condition the temperature gradient 

across the wall is chosen such that the temperature at the wall is a constant: 

Toutside 2Twal1 - xnside * (VIII-25) 

Together these two boundary conditions may be used, for example, to create a system 

that is insulated on three walls and a portion of the fourth one but contains a HOT SPOT 

which uses prescribed boundary conditions. This system would appear as in Fig. VIII-9. 

Ins Prescribed Ins 
(Tout = 2 Twa~ - Tin ) 

Figure VIII-9 
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Each of these sections of wall is described by assigning Tout values to the appropriate arrays 

in the system. For example, a procedure that implements insulated boundary conditions 

along the top wall, the sides, and the left half of the bottom wall, and implements prescribed 

boundary conditions at the right half of the bottom, appearrs as follows: 

c.. insulated sides 

do 100 j =l,jbar 

T(O,j) = T(1,j) 

T(ibar+l,j) = T(ibar,j) 

100 continue 

c.. insulated top and bottom 

do 200 i =l,ibarr 

T(i,O) = T(i,l) 

T(i,jbarr+l) = T(i,jbar) 

200 continue 

c.. hot spot 

do 300 i = ibar/2,ibar 

T(i,O) = 2"TwaJ.l - T(i,l) 

300 continue 

With these three major elements: the calculation of the heat transfer equation, the 

use of a buoyancy term from the Boussinesq approximation, and the implementation 

of insulated and prescribed temperature boundary conditions, heat transfer in a two- 

dimensional incompressible fluid can be modeled computationally. A diagram illustrating 

the interactions of these three elements appears below: 
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A Initial B.C. 

Output k End 
I 

I 
pt =ptime 

I I 

Dmax < Dtest 

Figure VIII-10 

C. Convection Calculations 

Our two-dimensional fluid code that includes a heat transfer model can be used 

to study the phenomenon of NATURAL CONVECTION. Natural convection is the 

circulating motion of fluid between regions of different temperatures due to the difference 

in the fluid density at each of these temperatures. It can be described by using the example 

of an initially cold room in which a heat source is placed in one corner. The heat source 

heats the air around it, consequently reducing the density of that air. The heated air then 

moves upwards and across the ceiling, where it is cooled back to its original temperature. 

Once again dense, the cool air moves down towards the floor as new heated air flows up 

from the heat source. Finally, the dense air finds it way back to the heat source, and the 

cycle is repeated. This cycle is illustrated in Fig. VIII-11. 
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I 
gas moves across 

ceiling and is cooled 

cool gas 
moves 

downward 

1 
gas moves across 

floor and is again heated I 
Figure VIII-11 

Using our two-dimensional fluid code with heat, we can generate results that 

demonstrate this process. Figures VIII-12, 13, 14, and 15 are plots of streamlines of a 

fluid experiencing natural convection. These plots use the following set of parameters: TO 

= 0 ("C) ibar = 15, jbar = 15, xlen = 3 (m), ylen = 3 (m), mu  = 1 xlO-* (m2/s). All 

ghost zones use insulated boundary conditions except zones 1-7 on the bottom wall, where 

the wall is set to a prescribed temperature of 100°C. 
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Streamlines at time 5 (s) 
Figure VIII-12 

Streamlines at time 20 (s) 
Figure VIII-13 

I 

Streamlines at time 40 (s) 
Figure VIII-14 

Streamlines at time 60 (s) 

Figure VIII-15 
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Figures VIII-16 through VIII-19 are contour plots of temperature in this fluid at times 

of 5 ,  20 40, and 60 seconds. These plots illustrate the flow of heat from the hot spot. 

Temperatures at time 5 (s) 

Figure VIII-16 

Temperatures at time 20 (s) 

Figure VIII-17 

Temperatures at time 40 (s) 

Figure VIII-18 

Temperatures at time 60 (s) 

Figure VIII-19 

In a fluid in which natural convection occurs, the rate of heat flow is greater than that 

of a fluid that is not in motion, because heat is not only being conducted but advected by 

the circular motion of fluid. A ratio can be formed between the total heat flux in a system 

and the heat flux due only to convection, such that 

(VIII-26) Total 
Conductive Flux ’ Nu = 

where Nu is a dimensionless quantity called the NUSSELT NUMBER. 

An example of a system for which the Nusselt number is often calculated is the 

BENARD PROBLEM. This system is made up of a long, narrow flow passage that is 
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heated at the bottom, cooled at the top, and insulated along each side, as illustrated in 

Fig. VIII-20. 

cooled 

insulated insulated 

heated 

Figure VIII-20 

Parameters are variable, such that the Nusselt number in this system can be observed 

at different RAYLEIGH NUMBERS. The Rayleigh number relates the magnitudes of the 

buoyancy and viscous forces in a system. In the Benard problem, the Rayleigh number is 

calculated as: 

-gh3/3AT Ra = 
UO 

J (VIII-27) 

where g is the acceleration of gravity (defined as negative if downward), h is the height 

of the passage, AT is the difference in temperatures between the top and the bottom of 

the passage, u is the viscosity of the fluid, o is the themometric conductivity of the fluid, 

and p is the volumetric coefficient of expansion, which for gases is the reciprocal of the 

reference temperature (k). 
The equation for the computational calculation of the Nusselt number can be derived 

by examining the conductive and actual heat fluxes. In this system, the conductive heat 

flux is calculated by Fick's Law, expressed in terms of themometric conductivity: 

(VIII-28) 

151 



where p is the density and b is the specific heat of the fluid. The actual flux of heat across 

a given plane existing at a vertical position of j + 1/2 is made up of both conductive and 

advective fluxes. This flux appears as 

Actual Flux = p b 

These equations can be substituted into Eq. (VIII-26) to obtain 

which reduces to: 

Nu = 

(VIII-29) 

(VIII-30) 

(VIII-3 1) 

If we choose to compute the Nusselt number at the bottom and top of the system, 

then we have no advective flux, and our equation becomes 
- 
i 

- Tbot  - q,1 
2 Tbot  - Ttop 

2 j  i=l 
N U b o t  = 7 

and 

(VIII-32) 

(VIII-33) 

When both of these numbers have equal values, heat flow into L e  system from the bottom 

is equal to heat flow out of the system through the top, and the system has reached a 

steady state. 

A routine to compute Nusselt numbers can be added to the output portion of our 

program. The code should be similar to the following: 
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ttot = 0. 

btot = 0. 

do 100 i=2,ibar+l 

ttot = ttot - (tTmp-T(i,jbar+l)) 

btot = btot + (bTmpT(i,2)) 

100 continue 

nm = (2*jbar*dx) /(den* (bTmptTmp)) 

tnuss = ttot*nm 

bnuss = btot*nm 

Using this routine, we can calculate the Nusselt number at the top and bottom in 

systems with various Rayleigh numbers. The next set of graphs are of a system with the 

following parameters: ibar = 40, jbar=8, xlen = 5 (m), ylen = l(m), g = -10 (m/s2), 
sigma = 0.01 (m 2 2  /s ), anu = 0.01 (m2/s2), beta = 1/300 (l/"C), Ttop = 0 ("C). These 

parameters correspond to a Rayleigh number that is equal to the Tbottom x 333. At a 

temperature of 1"C, the top and bottom Nusselt numbers converge to 1 & is shown in the 

following graph: 

Nusselt numbers 
Rayleigh number = 333 

Figure VIII-21 
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In this system, heat transfer is purely by conduction. 

At a bottom temperature of 5"C, the top and bottom Nusselt numbers converge at 

a value of 2.33, indicating that the system has become more convective in nature. This 

system is illustrated in Fig. VIII-22. 

':I \I---- 
? 
D 

h t I I , I I I  
91.0 4 0 . 0  5 0 . ~  mn rao c n o  90.0 wnn uno 

'3LW t a l  

Nusselt numbers 
Rayleigh number = 1665 

Figure VIII-22 

Flow at this Rayleigh number appears as is shown in Fig. VIII-23. 

Streamlines at time 10 (s) 
Rayleigh number = 1665 

Figure VIII-23 
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Heat contours appear in Fig. VIII-24. 

/ \ \ 

Heat Contours at time IO (s) 
Rayleigh number = 1665 

Figure VIII-24 

At higher Rayleigh numbers, such as 2 x lo4, corresponding with a temperature 

gradient of 67"C, the Nusselt number is even higher, but the Courant instability begins to 

affect the calculation of these values, as c m  be seen in Fig. VIII-25 

Nusselt numbers 
Rayleigh number = 2 x 1 O4 

Figure VIII-25 
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Despite the presence of this instability, it is possible to use our code to calculate 

Nusselt numbers at different Rayleigh numbers to within a reasonable degree of accuracy. 

The data from one such study appears below: 

- 

Tbot 
.5 
1 
3 
4 
5 

10 
33 
67 

333 
1000 

.................................... - - - - 
- 
- 
- 
- 

n m  
v w  

Nu 
1.00 
1.00 
1.01 
1.40 
2.33 
3.03 
3.92 
5.25 
7.00 
8.50 

Ra 
167 
333 

1000 
1332 
1665 
3330 
104 

2 x 104 
105 

3.33 x 105 

If we compare these Nusselt numbers with numbers that have been generated from 

numerous different experiments, we see that our computational values are very similar, 

as can be seen in Fig. VIII-26. The experimental data for this graph is taken from S. 

Chandrasekarr, Hydrodynamic and Hydromagnetic Stability (Dover, New York 1961). 

Computational and Experimental 
Nusselt Numbers 

Rayleigh Number 

Figure VIII-26 
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In this graph, computational Nusselt numbers are plotted as circles and are connected 

with a dotted line. Experimental values appeaz as a solid line. Discrepancies between 

computational results and experimental results are most likely due to the coarseness of the 

mesh used in these simulations and the fact that our mesh is two-dimensional whereas the 

laboratory flow passage exists in three dimensions. 

D. Two-Dimensional Compressible Flow 

Our last topic in this chapter of additions to a two-dimensional Eulerian code is more 

an extension of previous concepts than an addition of a new element to an already existing 

code. An Eulerian two-dimensional compressible code is based on the same Navier-Stokes 

compressible flow equations that were used in the one-dimensional Eulerian code, but 

extended to two dimensions. In the one-dimensional code the equations were 

apu+apu2 dP +-=O - -  
at ax ax 

a p ~  apuI pau 
ax +-- - 0 .  -+- at ax 

In two-dimensions the system of equations becomes 

-+- dP apu+aPv - = o  
at ax ay 

apu apu2 apuv aP -+-+-+-=o 
at ax ay ax 

apv apuv apv2 aP -+-+-+-=o 
at ax aY dY 

au a v  -+-+- a d + p (  ax I ay ) =0, at ax dY 

(V-37) 

(V-58) 

(V-59) 

(VIE-34) 

(VIII-35) 

(VIII-36) 

(VIII-37) 

where P signifies total pressure (p + q) rather than pressure per unit density. Note that 

the momentum equation becomes two equations when extended to two dimensions. 
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These equations are implemented in two dimensions much as they were in one. Six  

two-dimensional arrays are created: u, v, rho, sie, p, and q. These are located as in 

Fig. VIII-27. 

V 
rn - 

sie p 
rho’ q a u 

Figure VIII-27 

These arrays are initialized to their desired values in an initialization routine. This routine 

also sets time counters as was done in previous programs. 

Boundary conditions are set such that each wall of the system acts in one of three 

ways: as a rigid wall, a specified boundary, or an outflow boundary. Rigid walls are 

represented by setting a normal velocity of zero in all cells along the desired boundary. 

Specified boundaries are created by setting the normal velocity to some specified value as 

well as supplying sie and rho values for this flow. These values can be set according to the 

infinitestrength shock equations, 

and 

(Iv-45) 

(V-61) 

set to the same values as the initial rho’s and sic% in the mesh, or set to some other values, 

such as those present in a rarefaction wave. Outflow boundaries are created by setting 

the velocities normal to a wall equal to the normal velocities directly before the wall 
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(e.g., u(ibarj) = u(ibar-1,j)). It is neither necessary nor desirable for outflow boundaries 

to be calculated as they were in the two-dimensional incompressible case, because in the 

compressible case, the amount of mass in the system is not a constant. Tangential boundary 

conditions are not necessary for the case in which the viscosity does not include shear 

stresses. 

Obstacles can be included in a two-dimensional compressible code by using the same 

process that was discussed in Section A of this chapter. Once again, it is not necessary 

that tangential boundary conditions be included. 

The two-dimensional Eulerian compressible transport equations are calculated sim- 

ilarly to those of the one-dimensional Eulerian code. This calculation is done explicitly 

with a routine that first calculates mass density, momentum density, and internal energy 

density and then uses these values to determine new values of rho, sie, u, v, p, and q. The 

equations that determine the new densities are fhite-difFerence versions of Eqs. (VIII-34) 

through (VIII-37). These appear as 

(VIII-39) 

(VIII-40) 
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J 

(VIII-41) 

where the bold terms are donor-cell terms, which can be calculated using either a series of 

if/then checks or a doublelookup technique. 

If a doublelookup technique is used, integer arrays of ones and zeros must be set for 

six different circumstances: horizontal flux at right cell walls, vertical flux at cell tops, 

horizontal flux and vertical flux at cell centers, and horizontal and vertical flux at cell 

corners. These six different locations are illustrated in Fig. (VIII-28). 

1 
4 6 

4 
* I  1 

Figure VIII-28 

5 ,  
i+ 1/2, j+ 1/2 

3 

i+ 1/2, j 
2 

Six arrays must therefore be defined for each of the six types of advective fluxes. We 

then have: idnr and jdnr, which represent fluxes in the i and j directions at the cell centers 
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(1 and 2 in the previous figure); idnrw, which represent flux across the right cell wall (3); 

jdnrw, which represents flux across the top of the cell (4); and idnrc and jdrnc, which 

represent fluxes in the i- and j-directions at the cell corners (5 and 6). These donor-cell 

arrays are calculated each time cycle and are used in the advective terms of the transport 

equations according to the position and direction of the flux that is being represented. 

After quantity densities are calculated using either a series of if/then statements or 

a doublelookup technique, rho, sie, u, v are determined by setting the arrays equal to 

the appropriate density arrays divided by the mass densities, if necessary. Then p and q 

are determined fiom these arrays. In two dimensions the pressure equation is the same 

polytropic equation of state, 

p7 = (y - 1)pp-r  ; (W-23) 

but the q equation is modified to respond to velocities in both the i- md  j-directions. The 

two-dimensional q equation is 

or if negative qcj = 0 . (VIII-42) 

Note that if d y  is equal to dx and there is no vertical motion of the fluid, this equation is 

identical to the one-dimensional q equation. 

The output routine for a two-dimensional flow code can contain contour plots of 

density, internal energy, pressure, and viscous pressure. Streamlines are rarely used in the 

compressible case, however, because the divergence of the velocity is not equal to zero, and 

therefore Eq (WI-88) is not valid. 

The sections in this program interact in much the same way as did the sections in 

the two-dimensional incompressible fluid code. The twdimensional compressible code is 

structured as is illustrated in Fig. VIII-29. 
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Initial B.C. 
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p t  =ptime 

Outflow B.C. P + 
Obstacle 1 

Obstacle 2 

T 

Obstacle n 

Explicit 

Figure VIII-29 

E. Results of Two-Dimensional Compressible Flow 

Using our two-dimensional compressible flow code, we can model a number of different 

problems. One simple problem that can be simulated is the piston problem that was 

discussed in Chapters IV and V. By specifying parameters such that there is variation of 

flow parameters in a single direction, our two-dimensional code can be used to obtain the 

same type of results we saw in our one-dimensional simulations. In fact, if they are set 

to the same parameters, both the two-dimensional code and the one-dimensional Eulerian 

compressible code should yield exactly the same results. Comparing these two codes is a 

good method for removing errors from the two-dimensional code. 
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The two-dimensional code can also extend the piston problem, such that the shock is 

moving down a flow passage with an obstacle in it. The following set of plots show the 

effect of an idk i te  strength shock moving down such a passage. Parameters are den= 30 

(cm), ylen = 10 (cm), ibar = 75, jbar = 25, iobl = 21, iobr = 25, jobb = 1, jobt = 5, rho0 

= 1 (&), sieO = 0, gamma = 5/3, dt = .l(s), and ul = 1 (cm/s); rho’s and sie’s at the 

input boundary are defined using the equations of infinite strength shocks. 

Densities at time 10 (s) 

Figure VIII-30 

Internal Energies at time 10 (s) 

Figure VIII-31 
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Pressures at time 10 (s) 

Figure WII-32 

Notice that while the upper portion of this shock is passing over the obstacle, the bottom 

portion of the shock is being reflected back towards the front of the flow passage. This 

reflected shock becomes further detached as time progresses, as can be seen in the following 

pressure plot. 

Pressures at time 20 (s) 

Figure VIII-33 

In this plot we see that the reflected shock has moved upwards towards the top of the 

passage and leftwards towards the inlet. The shock is reflected off the top of the passage, 

and the shock and its reflection form a MACH STEM which will close off the incoming 

flow, choking the channel. A Mach stem is a shock that is formed between a shock that 
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hits a wall and the resulting reflected shock. A Mach stem is always perpendicular to the 

wall. It is illustrated in the following figure. 

1 shock 

Figure VIII-34 

The formation of a Mach stem is dependent on the angle at which the shock hits the top 

of the flow passage. Experiments have found that if the shock reaches the top wall at an 

angle of less than about 40 degrees, it will form a reflected shock but not a Mach stem and 

will eventually reach a steady state. If the shock reaches the wall at an angle greater than 

about 40 degrees; however, a Mach stem will form. In our plots we can scarcely see the 

Mach stem due to  the coarseness of resolution; we can, however, see its effect of choking 

off the channel as is shown by the contour lines above the obstacle in the next figure. 

Pressures at time 40 (s) 

Figure VIII-35 
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A reflected shock that does not form a Mach stem can be generated by m o w i n g  our 

program such that we are no longer dealing with an reflected inhi te  strength shock moving 

over a stationary obstacle. Instead, we simulate the problem of an obstacle creating a shock 

as it moves through stationaq flow. This simulation is done by setting the velocities, 

densities, and internal energies of the internal zones equal to the input values, as if one is 

traveling in the reference frame of the obstacle. 

Setting up the code in this way allows us to  examine flows at ‘high MACH NUMBERS. 

The Mach number is the ratio of the velocity of a shock to the sound speed ahead of that 

shock 
V 

Gound 
M G - .  

The lower the Mach number, the less intense the shock. 

We can create shocks at any specified Mach number by using our equation for the 

sound speed, 

If we substitute this value into our definition of M, we obtain 

Solving for I ,  this becomes 

(N-26) 

(VIII-43) 

(VIII-44) 

In the idkitestrength shock problem, input 1 ’s  were defined as id2, causing the 

. In the moving obstacle case; Mach number of the flow to have a maximum of 

however, I can be defined at any specified value, allowing for flows of any Mach number 

to be examined. For example by using Eq. (VIII-44), we can create a system with a Mach 

number of 10 by specifying an initial internal energy of 0.009 cm2/s2. Input rho’s and 

sie’s are set to rho0 and sieO respectively, and initial velocities are set equal to the input 

velocity at the left. These parameters correspond to the simulation of an obstacle that is 

moving to the left. The results of this simulation appear in Figs. VIII-36 through VIII-41. 

d& 
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Densities at time 10 (s) 

Figure VIII-36 

internal Energies at time 10 (s) 

Figure VIII-37 

Pressures at time 10 (s) 

Figure VIII-38 
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Note that the shock formed in front of the obstacle is more swept back than the lower 

Mach number shock (see Figs. VIII-30 though VIII-32). This shock hits the top wall at 

angle less than 40 degrees and hence does not choke the channel. Instead it is reflected off 

the top wall and reaches a steady state. This reflection can be seen in the following three 

plots of pressure: 

Pressures at time 20 (s) 

Figure VIII-39 

Pressures at time 40 (s) 

Figure VIII-40 
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Pressures at time 100 (s) 

Figure VIII-41 

Note that the slight upward turn of the shock in the region near to ,he wall is an effect of 

the approximation of the actual shock by finite zones. 

Another problem that can be modeled using a two-dimensional compressible flow code 

is the wedge problem, in which a shock passes over a wedge of a specsed angle and the 

angle at which the shock reflects is measured. For this problem the difference between the 

angle of the shock and the wedge can be determined using the following equation, which 

can be found in LA-4700: 

(VIII-45) 

where 8 is the angle of the shock, Q! is the angle of the wedge, and MO is the Mach number 

of incoming flow. We can create a wedge of this type by making multiple calls to the 

object routine and stacking these objects in a triangle shape. These following set of figure 

are of a system with the parameters den= 5 (cm), ylen = 5 (cm), ibar = 50, jbar = 50, 

Mo = 10, and with a wedge that begins in zone 11 and goes to the end of the mesh, ending 

at a height of 20 zones, and corresponding to an angle of 27 degrees. Figure VIII-42 is a 

contour plot of pressures in this system at a time of 50 seconds. 
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Pressures at time 50 (s) 

Figure VIII-42 

In this set of circumstances the predicted angle of reflection is approximately 38 degrees. 

This angle is extremely close to the computationally calculated angle of 37 degrees. 

If we now use the same set of parameters but for a wedge with a height of 10 zones 

(corresponding to an angle of 14 degrees), we obtain the following results. Again a contour 

plot of pressures is displayed. 
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Pressures at time 50 (s) 

Figure VIII-43 

For this set of circumstances, the analytical solution predicts an angle of 19 degrees whereas 

the computational solution yields an angle of approximately 21 degrees. 

- In this chapter, we examined three different modifications that can be made to a two- 

dimensional incompressible Eulerian flow code and discussed some additional problems 

that can be modeled with codes that include these modifications. In the next chapter, 

we will again be making an addition to our compressible fluid code, but this additional 

element will be different from the ones discussed in this chapter. Up to now, our equations 

have followed directly from mathematical manipulation of equations derived from basic 

physical principles, but this will not be the case in the next chapter. Instead, a complex 

mathematical model will be constructed to successfully approximate rigorously derived 

equations that are not able to be directly computed. Our turbulence transport equations 

will contain many of the properties, but will not directly represent, the computational 

calculation of the miniature fluctuations that are present in fluid flow of sufficiently high 

Reynolds number. 
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IX. TURBULENCE TRANSPORT 

A. Tensor Notation 

Before we discuss the equations of turbulence transport, it will be helpful to first 

examine a shorthand notation that can be used to express them. One such notation, 

CARTESIAN TENSOR NOTATION, is based on the idea that a system will act in the 

same manner regardless of the coordinates that are chosen to describe it. We can see 

this property in the momentum equations (VII-34 and VII-35), where an equation that 

expressed motion in the x-direction is coupled with a similar equation for motion in the 

y-direction; Eq. (VII-35) is simply Eq. (VII-34) with the x’s exchanged with the y’s and the 

u’s exchanged with the v’s. This same concept is also present in the heat equation, where 

the advective and viscous terms are symmetric with respect to the x- and y-directions. 

Cartesian tensor notation makes use of subscripts to express the general directionality 

of a quantity without explicitly stating that it is in a particular x-, y-, or z-direction. 

This concept can be demonstrated by an example such as the two-dimensional heat-flow 

equation. In partial differential form, the heat-flow equation is Eq. (VIII-5): 

dT auT avT d2T d2T -+- 
Each of the u, 21, x, and y terms in this equation is in reality a component of a vector, 

(VIII-5) 

associated with either the x- or y-direction. If we let the symbol x represent a scalar (i.e., 

no direction) length and u represent a scalar speed, we can represent lengths and velocities 

in definite directions with subscripts. Lengths and velocities in the x-direction become x, 

and u,, and lengths and velocities in the y-direction become x, and u,. Equation (VIII-5) 

would then appear as follows: 

If we further replace u, with u1, u, with u2, x, with XI, and x, with x2, the equation 

becomes 
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From this form, our equation can be rewritten using general subscripts (i, j, etc.) rather 

than specific numbered directions. This rewriting is done using the two major rules that 

govern equations written in Cartesian tensor notation. 

The first of these rules is that any repeated index indicates the sum of d the elements 

in each of the available dimensions. For a three-dimensional system for example: 

This rule allows us to condense combinations of terms such as + into a single 
ax2 

dU.T term, =’ 
The second rule of Cartesian tensor notation is that any “free” (i-e., not repeated) 

index in one term must be the same in every other term. For example, in two dimensions, 

would become two equations: 

This rule of consistency of free indices coupled with the summation rule for repeated 

indices forms the basis of Cartesian tensor notation. We can use this notation to express 

Eq. (IX-2) a~ follows: 

In a similar manner, both momentum equations, 

a2u a2u 
- ap  ax .; v (- ax2 + -) ay2 

du au2 auv 
at ax a y  

+---- -+- 
and 

-++++=-- av auv av2 “+v(-+-) d2v a2v 7 

at ax a y  aY ax2 ay2 

(VII-34) 

(VTI-35) 
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can be written as one equation: 

(IX-8) 

Notice that in each of these tensor equations [Eqs. (IX-7) and (E-S)], all the terms have 

the same number of free indices. 

Equation (IX-7) has no free indices in any of its terms; it is made up of scalars. 

Such a scalar equation can be said to be made up of terms of TENSOR ORDER zero. 

Equation (E-8): on the other hand, has one free index in each of its terms and therefore 

is made up of vectors, or first-order tensors. As the number of free indices increases in an 

equation, its tensor order similarly increases. Tensors of any order may exist, but all the 

terms of a given equation must be of the same order. 

Cartesian tensor notation will be useful when discussing the equations of turbulence 

transport. It greatly increases the clarity of these equations and simplifies the notation in 

the complex derivations that are used to generate turbulencetransport models. 

B. Turbulence Transport and K - E Models 

Before we examine the equations of turbulence transport, we must first define what 

we mean by turbulence. Any flow can be divided into steady and fluctuating parts. For 

our purposes, we will define TURBULENCE as the fluctuating part of that flow. The 

underlying average velocities over which these turbulent fluctuations exist will be called 

the MEAN FLOW. 

Precisely what we define to be the mean flow and what we consider to be turbulence 

is a matter of choice. In the Karman vortex street problem, for example, there exists 

at low viscosities a fluctuating stream moving to the right. This rightward flow could be 

considered the mean flow, whereas the up-and-down oscillations could be called turbulence. 

But another definition could be chosen: both the rightward velocity and the up-and-down 

motion could be considered part of the mean flow, whereas the miniature fluctuations that 

are present within the up-and-down stream could be labeled as turbulence. Both of these 
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definitions are valid. Flow is divided into mean flow and turbulence, and the threshold 

between these two types of flow is set at any arbitrary resolution. 

In our simulations of turbulence, we will consider this threshold to be at the level of 

resolution of the mesh. Flow that can be resolved through the use of u’s and v’s will be 

mean flow, and fluctuations that are smaller than the area of a cell will be considered to be 

turbulence. In principle, however, our turbulence equations can resolve fluctuations even 

greater than the resolution of the mesh. Although this is rarely desired, it is interesting 

to note that turbulence equations can be used to represent fluctuations at any scale. 

Our turbulence model will not resolve the turbulent fluctuations themselves but rather 

the T U B U L E N T  KINETIC ENERGY per unit mass, the amount of kinetic energy per 

unit mass present in the turbulent fluctuations. This two-dimensional array will be deflned 

at the cell centers and designated by a K. A variable, E, will also be calculated over the 

mesh to represent the rate of dissipation of turbulent kinetic energy in different subregions 

in the fluid. The resulting placement of variables on the mesh appeaxs below: 

Figure E-1 

The method of simulating turbulence that makw use of these variables is known as the 

K - E TURBULENCE MODEL, named after the two variables in its transport equations. 

In order to derive an expression for the effect of K and E on the transport of 

momentum, we begin with the momentum equation as expressed in tensor form (E-8). 
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Each velocity and pressure in this equation is made up of a mean value and a fluctuating 

I 
value: 

ui iii + ui 

where iii and P represent the average parts, and ui and P’ represent the fluctuating parts 

of U i  and P. Substituting these definitions into Eq. (E-8) gives us 

or 

Because the turbulent fluctuations are symmetric about the mean flow, the time averages 

of the fluctuations (E: ,  E:, PI) are equal to zero. Therefore, all terms that contain a single 

fluctuating factor are also equal to zero when averaged, and the time average of Eq. (IX-10) 

can be written a s  

(Ix-11) 

This equation is almost identical to the original momentum equation, (E-8) but contains 

an additional term. While u$ and u: are both equal to zero when averaged over time, the 

time average of their product (u;u>) is not equal to zero, resulting in the e term in 

Eq. (E-11). (s) is called the REYNOLDS STRESS TENSOR, abbreviated as R&j. 

This second-order tensor represents the effect of turbulence on the mean flow. 

- - au! u‘. 

Computationally, this tensor is approximated by calculating a turbulent viscosity that 

is added to the molecular viscosity to represent the total viscous forces on the fluid. TO 

make this approximation, we substitute the variable &¶j for (uiu;). Equation (IX-11) 

becomes 

- 
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which is a somewhat limited case of the fluid-flow equation. It is valid only when u is a 

constant and the fluid is incompressible. This equation is more properly written as 

Using this general equation, we then make the approximation that 

(E-13) 

(E-14) 

where ut is the TURBULENT VISCOSITY, a viscosity that results from the presence of 

turbulence in the system, K is the turbulent kinetic energy, and &,j is the KRONECKER 

SYMBOL which is one if i equals j, and zero otherwise. The MODELING of &,j in this 

manner is a somewhat arbitrary decision. It is made because more rigorous representations 

of this tensor are unnecessary for the accuracy to which we desire a solution. This 

representation is chosen because it has the correct dimensions, is of the right tensor order, 

and has been experimentally demonstrated to be reasonably accurate. This model is known 

as the BOUSSINESQ APPROXIMATION for the Reynolds stress tensor. It is not to be 

confused with the Boussinesq approximation for the momentum equation. 

Because the Si,j term is absorbed in the pressure term, the Boussinesq approximation 

allows us to rewrite Eq. (E-13) as 

(E-15) 

We calculate ut by using the variables K and E. In this equation K ,  the turbulent kinetic 

energy, has units of energy per unit mass: &$T. E is the rate of dissipation of K ,  and its 

units are those of energy per unit mass per unit tiine: ~&. Because viscosity has units 

of e, turbulent viscosity can be synthesized dimensionally as 

len h2 

len h2 

en h2 

K 2  G/- , 
E 
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where C, is a constant that has been experimentally determined to be about 0.09. Our 

equation for ut at a point ( i , j )  on the mesh is then 

Kt  j 
Vt( i , j )  = 0.09- . 

E i , j  
(IX-16) 

Having related K and E to the momentum equation, we must also derive transport 

equations for these two quantities. K is calculated by relating it to the Reynolds stress 

tensor, and using the classical equation for kinetic energy: 

(E-17) 

Turbulent kinetic energy, which is expressed as kinetic energy per unit mass, is then 

which can also be written as 
1 K = -&,i. 
2 

(E-18) 

(E-19) 

Using this equation for K in terms of the Reynolds tensor, we calculate K by first deriving 

an equation for &,j. 

This derivation will not be carried out in detail in this work, but a short overview 

is included to give some insight into the process: First, Eq. (E-9) is multiplied by u$ 

to obtain an equation in terms of uj*. Then Eq. (IX-9) is written in terms of u$ and 

multiplied by u; to obtain an equation in terms of u;%. These two equations axe added 

and averaged to obtain an equation in terms of ~ $ 2  + u;-$. In this step, all equations 

containing a single fluctuating term become zero. Then, by the chain rule [Eq. (VII- 

53)], u i s  + u i 2  becomes +, which is the time derivative of the Reynolds stress 

tensor, +. This equation is contracted to be in terms of &,i and divided by two. One 

is then left with a transport equation for K which contains some terms that carnnot be 

I au'- 

-- ad. 

- au!ui. 

bR. . 

computationally represented using only K and E .  These terms are then modeled, resulting 

in a fkal equation for the transport of K:  
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In this equation the term denoted by I represents the time rate of change of K, 11 represents 

advection, 111 represents diffusion of turbulent energy, IV represents the generation of 

turbulence by SHEAR FORCES (forces similar to friction that are caused by flows at 

different velocities rubbing against each other), and V ( E )  represents the dissipation of 

turbulence. 

A transport equation for E is “derived” by modeling an equation after the transport 

equation for K. The e transport equation is 

I ~ I  IV (E-21) 

where a,, C E ~ ,  C,2 are constants which have been determined as a result of experimentation. 

Typically, 
0, M 1.3 

C,l M 1.55 

c,2 x 2.0 . 
Equation (E-Zl), like Eq. (IX-20) is made up of a rate of change term ( I ) ,  an advection 

term (11), a diffusion term (111), a generation term ( IV) ,  and a dissipation or dampening 

term (V). 

These two transport equations [Eqs. (IX-20) and (IX-Zl)] , combined with the equation 

for turbulence viscosity [Eq. (lX16)] make up the K - E turbulence model. We will 

employ this model in a two-dimensional fluid-flow code to compute turbulence transport 

comput ationally. 

C. Computational Implementation of the K - E Turbulence-3kansport Model 

The K - E turbulence model is implemented by creating two new arrays: K and eps. 

The values of these arrays are speczed at cell centers as is illustrated in Fig. E-1 in 

Section B. Both two-dimensional arrays are initialized in the setup procedure. A typical 
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initial value for K is one-tenth of the energy per mass of the mean flow. In the Karman 

vortex street problem, for example, initial K’s might be assigned such that 

KO = (A) (id2) . (E-22) 

A typical value of eps0, the initial value of the eps array, is K3/2 divided by some 

characteristic size of the turbulence of the system. For the Karman vortex problem, a 

typical turbulence size is half the width of the obstacle. For this problem, the E array is 

then initialized to 

(E-23) 

In addition to these two arrays, three other arrays are created for the turbulence viscosity 

at the cell centers, the top of the cells, and the right cell walls. These are configured as in 

Fig. IX-2. 

0 
anuK 

Figure IX-2 

These arrays need not be initialized because they- will be calculated before they are ever 

used in the program. 

The u, v, ubar, vbar, and pressure arrays are implemented as they were in our 

other two-dimensional simulations with the exception of the total viscosity (molecular 
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plus turbulent) being used rather than simply the molecular viscosity. Our turbulence 

transport code will not contain a temperature m a y  or equations of heat transport. 

Besides the initialization of the K and eps mays in the setup procedure, our turbulence 

t rmpor t  code contains three major sections that did not exist in the basic two-dimensional 

incompressible code: the implementation of turbulent boundary conditions, the calculation 

of turbulent viscosities, and the calculation of the K and E equations themselves. The 

resulting code is structured as in Fig E-3.  

Start 

+l Initial B.C. 

st = stim 
output Tests 

1 

iC1 Outflow B.C. 

End I 

Figure E - 3  

The turbulence boundary conditions will be reflective, with the values of K and eps at 

the ghost zones equal to the values at the real zones directly adjacent to them. This 

method is only an approximation of the true effect of a wall on the turbulence in a 
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system. Much more accurate boundary conditions exist, using WALL FUNCTIONS, that 

carefully calculate more appropriate values for the ghost zones. Even these functions have 

their limitations, however; and for turbulence to be completely modeled at a wall, each 

component of the Reynolds stress tensor must be calculated separately rather than the 

overall turbulent kinetic energy (K). Because our simulation is not overly concerned with 

turbulence at the walls of the system, neither of these methods is necessary. A simple 

reflective condition where 

Kghost = Krea l  

and 

€ghost = ‘%ea1 

(E-24) 

(E-25) 

will prove sufficiently accurate for our immediate purposes. Two loops that canry out 

these calculations along the top and bottom and along the edges of the mesh comprise the 

turbulent boundary condition routine. 

The routine to compute the total viscosities assigns values to the three turbulence 

viscosity arrays (anuk, anuki, and anukj) by using K and eps values at the desired positions 

to calculate ut as in Eq. (IX-16) and adding the molecular viscosity. K’s and E’ s at cell 

walls are calculated by averaging. The three equations for the total viscosities are 

3 

Kz:j 
(andS)i,j = - + Vmolecular 

ci,j 
(IX-26) 

(E-27) 

(IX-28) 

These should be carried out every time step, just before the program enters the routine 

for turbulence transport. 
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The turbulence transport equations are calculated by computing Eqs. (E-20) and ( E -  

21) at every point on the mesh. For this calculation local arrays of variables are employed 

to represent each term in the equations. Equations (M-20) and (IX-21) are then written 

as 

(E-29) dK - = -Ktl + Kt2  + Kt3 - E at 
and 

dE - = -dl + d2 + d 3  - d 4  , at (M-30) 

where Ktl -, aKW K t 2 ~ d  axk ( ( v + v t ) E ) , K t 3 = ( v + v t )  ( % + % ) % , d l = h  axi ' 
E2 and d 4  E CE2w. u+ut aK 

K and E are calculated using the finitedifference versions of Eqs. (E-29) and (E-30): 

w ~ c h  leaves us the issue of how each of the terms in these equations is calculated. 

The advective terms in these equations (Kt l  and dl) are calculated by first computing 

donor-cell arrays as was done in the two-dimensional heat-flow equation: Two arrays, idnr 

and jdnr ,  are calculated. idnr is calculated from the u velocities at position i + 1/2, j 

and is zero if the flow is from left to right and one if the flow is from right to left. j d n r  

is calculated from the v velocities at position i, j + 1/2 and is zero if the flow is upwards 

and one if the flow is downwards. These two arrays are used to calculate donor cell in a 

double-lookup fashion. 

In finite-dif€erence form Ktl and dl are 

(E-33) 

and 
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where each K and E at a cell wall is calculated using the donor-cell technique. In code form 

these equations appear as 

Kt  1 (i,j) =(u(i,j) *K(i+idnr (i,j) ,j) - 

& u(i- 1 j )  *K (i-l+idnr(i-l ,j) ,j))/dx + 
& (v(ij>*K(i,j+jdnr(i,j)) - 

& v(i-1,j)*K(i7j-l+jdnr(i-17j))/dy 

Epstl(i,j) =( u(ij)*Eps(i+idnr(i,j)j) - 

& u( i- 1 ,j ) *Eps( i- l+idnr (i- 1 ,j ) ,j ) ) /dx + 
& (v(i,j)*Eps(i,j+jdnr(i,j)) - 
& v(i-l,j)*Eps(i,j-l+jdnr(i-1,j) )/dy 

Kt2 and et2 are written in finite-difference form as 

1 -  (Y + Y t ( i , j + l / 2 ) )  (Ei,j+l - E i , j )  - (Y + Yt ( i , j -1 /2 ) )  k i , j  - %-d 
dY 

In code form, this equation is written as follows: 

Kt2(i,j)=( (anuki(i,j)*(K(i+l,j)-K(i,j)) 

& + anuki(i-1 ,j)* (K(i-1 ,j)-K(i,j)))/ (dx*dx)) 

& + ((anukj(i,j)*(K(ij+l)-K(i,j)) 
& + anukj(ij-l)*(K(ij-l)-K(ij)))/(dy*dy)) 

Epst2(i7j)=( (anuki(i,j)*(Eps(i+l,j)-Eps(i,j)) 

& + anuki( i- 1 ,j ) * (Eps(i- 1 j)-Eps (i,j)))/ (dx*dx) ) 

& + ((anukj(i,j)*(Eps(i,j+l)-Eps(i,j)) 
& + anukj(i,j-l)*(Eps(ij-1)-Eps(i,j)))/(dy*dy)) 
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& * (l/sige) 

Kt3 is calculated by first expanding to obtain 

This reduces to 

au av 
Kt3 = (V + Vt)  [z + ( ay + B)2 + 2 ( $)2] . 

(E-37) 

(E-38) 

In finite-difference form, this equation appears as 

(E-39) 

where u at i and v at j are the average of ui+1/2 and ui-112 and the average of ~ j + 1 / 2  

and vj-1/2 respectively. Note that the middle term involves differences taken across a 

distance of 2 dx and 2 ddy,  due to the positions at which u and v are defined. In code form 

Eq. (E-39) appears as the the following: 

Kt3 (id) = anuK(i,j) * (( u(i j)-u(i- l j  )) **2)/ (dx*dx) + 
& ((v(i,j)-v(i,j-l))**2)/(dy*dy) + 
& (( (u(i,j+l)+u(i-~,j+l)-u(i,j-~)-u(i-~,j-~))/(4*dy)) + 
& ((v(i+~,j)+v(i+~,j-~)-v(i-~,j)-v(i-~,j-~))/(~*~)))**~ 

et3 is calculated using Kt3, where 

(IX-40) 

In code form, this equation is 

Epst3(i,j) = cel * (Eps(i,j)/K(ij)) * Kt3(i,j) 
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et4 is simply calculated as 

(E-41) 

or, in code form, 

Epst4(i7j) = ce2 * Eps(i,j)*Eps(ij)/K(ij) . 

This term is used along with the other E terms to calculate the array of turbulence 

dissipation rates. 

The turbulence transport routine is made up of three major loops: the first to  calculate 

donor-cell arrays; the second to calculate Ktl, Kt2, Kt3, Epstl, Epst2, Epst3, and Epst4; 

and a third to combine these terms using Eqs. (IX-31) and (E-32). 

This routine, along with the turbulent boundary condition routine and the routine to 

calculate total viscosities, makes up the K - E turbulence model. The implementation of 

these three procedures, along with the use of total viscosity wherever molecular viscosity 

appears in the momentum and turbulence transport equations, is all that is necessary to 

create a code that calculates turbulence transport. 

D. Turbulence Transport and the Karman Vortex Street 

Our incompressible code with equations of turbulence transport can be applied to the 

Karman vortex street problem. In order to compare our results with those obtained in 

Chapter VII, we can use the same set of parameters, namely: a flow passage 50 (cm) long 

and 15 (cm) wide, flow around the obstacle at a rate of 1.5 (cm/s), an initial flow rate at 

the right of 1 (cm/s), and a variable fluid viscosity. 

The graphs presented in this section use these parameters on a grid of dimensions ibar 

= 25 and jbar = 15. Initial K values and input K values are set to 0.01 (cm /s ), whereas 

initial and input E values are set such that the TUWULENCE SCALE is equal to 2 (cm). 

The turbulence scale is a measure of the size of the turbulent fluctuations; it is represented 

by an s and is calculated as 

2 2  
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A typical turbulence scale at low Reynolds numbers is about one to one half the size 

of a major feature, such as the obstacle. At high Reynolds numbers the turbulence scale 

is more on the order of one-fifth to one-tenth of the size of a major feature. 

In this first set of graphs, stnu is set to 1; resulting in a system with a Reynolds number 

of 5. Graphs appear at a time of 100 seconds. 

Streamlines at time 100 (s) 
Reynolds Number = 5 

Figure IX-4 

K contours at time 100 (s) 
Reynolds Number = 5 

Figure IX-5 
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Eps contours at time 100 (s) 
Reynolds Number = 5 

Figure IX-6 

Notice that in these graphs, there is no flow separation, and turbulent fluctuations 

are confined to the region where turbulence is being directly pumped into the system. 

Turbulent kinetic energy cannot be sustained in this noductuating system and is therefore 

dissipated. 

- At a viscosity of 0.2, the system begins to develop stationary vortices as can be seen 

in Fig. 7. 

Streamlinesat time 1 00 (s) 
Reynolds Number = 25 

Figure IX-7 
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These vortices are better resolved in a run with a jbar of 30. 

Streamlines at time 100 (s) 
Reynolds Number = 25 

Figure IX-8 

K and E in a run using a jbar of 15 appear as follows. 

K contours at time 100 (s) 
Reynolds Number = 25 

Figure IX-9 
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Eps contours at time 100 (s) 
Reynolds Number = 25 

Figure IX-10 

Again we see turbulence energy being dissipated by the system. Turbulence energy is 

much stronger where it is being pumped into the system than it is anywhere else. At this 

Reynolds number, however, turbulence energy reaches an area farther downstream than 

it did in the first example. The Reynolds number has not yet been increased to the level 

that turbulence is being generated by the system, but it is now sufficiently high for the 

input turbulence to persist for an extended period of time. 

- At a viscosity of 0.02 and a Reynolds number of 250, the system develops a Karman 

vortex street. This can be seen in the following two graphs taken at a time of 100 seconds. 

Streamlines at time 100 (s) 
Reynolds Number = 250 

Figure IX-11 
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Streamlines at time 100 (s) 
Reynolds Number = 250 

Fluid Reference Frame 

Figure IX-12 

K and E at the same time appear as the following 

K contours at time 100 (s) 
Reynolds Number = 250 

Figure IX-13 
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v- 

Eps contours at time 100 (s) 
Reynolds Number = 250 

Figure IX-14 

In these graphs, turbulence is once again strongest where it is being pumped in, but 

shearing forces farther down the street have created other regions of turbulence. The 

Reynolds number has been increased to a point where turbulence not only persists but is 

generated by the system. 

The Karman vortex street can be simulated in another manner, by setting the initial 

K’s and the K at the left to a higher value and allowing for the turbulence equations to 

represent not only the small fluctuations within the stream but the large changes in velocity 

of the stream itself The system then evolves into a situation where the turbulence kinetic 

energy is high, thereby resulting in a high-turbulence viscosity. This viscosity lowers the 

EFFECTIVE REYNOLDS NUMBER of the system, the Reynolds number a s  calculated 

using the sum of the molecular and turbulence viscosities. The effective reynolds number is 

in contrast to the MOLECULAR FtEYNOLDS NUMBER, which is calculated using only 

the molecular viscosity. At a low effective Reynolds number, the resolved system does not 

contained the Karman vortex street itself, but thekinetic energy contained in this stream 

is visible in the turbulence kinetic energies. Such a system is shown in the following set of 

plots, which are taken at a Reynolds number of 250 and an initial K and input K of 0.225 
2 2  (cm I s  1. 
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Streamlines at time 100 (s) 
Molecular Reynolds Number = 250 

Figure IX-15 

K contours at time 100 (s) 
Molecular Reynolds Number = 250 

Figure IX-16 

i, 

Eps contours at time 100 (s) 
Molecular Reynolds Number = 250 

Figure E-17 
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In these plots, K values are about 0.17 (cm2/s2) whereas E values are about 0.016 

(cm2/s3). These values result in a turbulence viscosity of 0.16 (cm2/s), corresponding to 

an effective Reynolds number of 30, which is consistent with the type of resolved flow that 

can be seen in Fig. IX-15. 

(I) 
(I) 

+ 0- 
t 
3 

2 p’- .- 
L 2- 

It is hoped that the difference between the resolved kinetic energies in this and in 

another calculation that has no equations of turbulence tramport will be comparable to 

the turbulent kinetic energy. This hypothesis can be tested by recording the resolved 

kinetic energy and turbulent energy per unit mass of a turbulence transport calculation 

and the resolved kinetic energy per unit mass of the second calculation at equal time 

intervals. The difference between the two resolved kinetic energies can then be compared 

with the turbulence kinetic energy. 

a , ’  > :  

Figure 18 shows a comparison of these two values for the parameters used in Figs. IX- 

15-17. 

/- difference between runs 

Comparisons of Fluctuating Energies 

Figure IX-18 
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In this figure, we can see that the turbulent kinetic energy is in fact much less than the 

difference between the two resolved kinetic energies. This difference is caused by the fact 

that the turbulence equations are only able to model the fluctuations in the shear layer that 

occurs behind the object. They are able to simulate the vortex street but underestimate 

its effect in the top and bottom portions of the flow passage. In the resolved vortex street, 

fluctuations in the center of the graph have large and immediate effects on the areas in 

the top and bottom of the graph; these areas can be said to be CORRELATED. This 

correlation, which can be clearly seen in Fig. IX-12, fails to be accurately represented by 

the K - E turbulence model. 

The problem is that the K - E model is a SINGLE POINT TUWULENCE MODEL, 

meaning that it relies on the values of quantities directly surrounding a single point to 

generate the turbulence values at that point. This type of model is in contrast with 

the SPECTFtAL TURBULENCE MODELS that are presently being developed. Such 

models establish correlations between different regions in a fluid and attempt to simulate 

turbulence in a much more detailed and accurate manner. The development of spectral 

turbulence models is one of the many areas in which research is being done in the field of 

computational fluid dynamics. 

In this book we have examined the basics of finitedifFerence methods for numerical 

fluid dynamics. The equations that we have studied, the terminology we have used, and the 

techniques we have examined have been used for many years; yet the field is one in which 

many developments are still being made. Finitedifference codes have given us the ability 

to mathematically represent and study the behavior of physical systems with increasing 

accuracy and complexity. Their research and development remains an active and exciting 

field for those interested in the application of mathematics and computing to the study of 

the world around us. 

195 



Glossary 

Adiabatic system (VII-C). A system that contains no processes that either absorb or 

generate heat. In an adiabatic system, both pressure and internal energy are functions 

of density. 

Advective flux (V-A). Flux that occurs as a result of the motion of fluid from one 

region to another. An example of this type of flux is heat convection. 

Artificial viscosity (VI-E). An additional diffusion term that is added to the finite- 

difference -momentum equation in order to counteract the negative diffusion that is 

intrinsic to this approximation of a partial-differential equation. 

Benard problem (VIII-C). A problem involving a long, thin flow passage that is 

heated at the bottom, cooled at the top, and insulated along the sides. The Nusselt 

number can be calculated in this system in relation to the Rayleigh number. 

Boundary conditions (11-B). Equations that represent the external conditions that 

act on a system. 

Boussinesq approximation for heat flow (VIII-B). The assumption in an incom- 

pressible fluid code that all  terms of the momentum equation can be modeled at constant 

density except the buoyancy term. The Boussinesq approximation for heat flow is not 

to be confused with the Boussinesq approximation for the Reynolds stress tensor. These 

are completely independent concepts. 

Boussinesq approximation for the Reynolds stress tensor (UE-B). The approx- 

imation of the Reynolds stress tensor as 

-ut (5 + 2) + -KSilj 2 , dxj 3 

where K is the turbulent kinetic energy and vt is the turbulent viscosity. The Boussinesq 

approximation for the Reynolds stress tensor is not to be confused with the Boussinesq 

approximation for heat flow. 
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Cartesian tensor notation (IX-A). A notation that makes use of subscripts to express 

the general directionality of a quantity without explicitly stating that the quantity is in 

a particular x-, y-, or z-direction. This notation is helpful in simplifying the equations 

of fluid motion and aids in the complex derivations that are used to generate turbulence 

transport models, as well as many other models in physics. 

Cell (11-B). An element of finite size that is used to represent the conditions at an 

arbitrary position in a system. A cell is also called a zone. 

Centered flux (V-B). An advective expression that uses the average of the values of 

the quantities on both sides of the advective surface as the value of the advected quantity. 

Coefficient of heat conductivity (11-B). A quantity that is proportional to the rate 

at which a given material conducts heat across a temperature gradient. Its units are 
(energy) 

(length)(time) (temperature) ' 

Compressible fluid (IV-A). A fluid that is moved at speeds comparable to its sound 

speed,. causing it to change its density. 

Conservation (11-A). The concept that mass, momentum, and energy are never 

destroyed, only change form or move from one region to another. 

Contact Discontinuity (IV-E). Any fluid discontinuity that moves with its fluid 

elements, such as the fluid interface in a shock tube. 

Correlation (IX-D). An interdependence between quantities not necessarily located 

adjacent to each other. 

Courant condition (IV-C). A numerical stability condition that occurs as a result of 

the finite-difference approximation of the momentum equation. The Courant condition 

is 

(IV-36) 

where v is (IUI 4- Gound). 

Donor-cell flux (V-B). An advective expression that uses the upstream value of the 

advected quantity. 
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Effective Reynolds number (IX-D). The Reynolds number as calculated using the 

sum of the molecular and turbulence viscosities. See Reynolds number. 

Error Function. A function that often results as a solution to a partial-differential 

equation, the error function is defined as 

2 

2 
e r f ( x >  - J e-x2dx . 

J;; 
0 

The error function can be calculated using the table at the end of Section 111-E. It is 

also called the probability integral. 

Eulerian fluid-mechanics code (IV-A) . A code in which zones remain fixed in space. 

In this type of code, fluids move in and out of zones at various rates, causing the mass 

contained in a particular zone to change as the simulation progresses. All physical 

quantities are fluxed between cells, but the positions of the cells remain the same. 

Explicit solving method (111-C). A solving method in which values at each new time 

cycle are calculated directly from the values at the previous time cycle. This is in contrast 

to the implicit solving method. 

Fictitious zones (11-D). Finite-difference zones that exist beyond the normal bound- 

aries of a system and are used in representing boundary conditions. Fictitious zones are 

also called ghost zones. 

Fluid (IV-A). A material that is insnitely deformable or malleable. A fluid may resist 

moving from one shape to mother but resists the same amount in all directions and in 

aJ shapes. 

Flux (11-A). 

Ghost zones (11-D). 

The amount of a quantity passing through a unit area in a unit time. 

Zones that exist beyond -the normal boundaries of a system and 

are used in representing boundary conditions. They are also called fictitious zones. 

Hot spot (VIII-B). A section of wall that contains a prescribed temperature boundary 

condition in an otherwise insulated system. 
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Implicit solving method (111-C). A solving method in which values at a new time 

cycle are calculated based on the rate of change of values at this new time step. Values 

at the old time step are used only indirectly. This is in contrast to the explicit method. 

Incompressible fluid (IV-A). A fluid that moves at far subsonic speeds and does not 

change its density. 

Infinite-strength shock (IV-E). A shock that moves at a speed that is large compared 

to the sound speed of the fluid ahead of the shock. 

Insulated boundary condition (VIII-B). A boundary condition in which there is no 

heat fluxed across the wall. It is achieved by specifying a zero temperature gradient 

across the wall. 

Isotropic (VII-B). 

K - e turbulence model (IX-B). A turbulence representation that contains transport 

equations for the turbulent kinetic energy per unit mass ( K )  and the dissipation rate of 

that turbulence (E). 

The quality of not varying as a function of direction. 

Karman vortex street (VII-C). A type of turbulent fluid flow that occurs in systems 

in which a fluid within an appropriate range of velocities and viscosities flows around an 

object. The Karman vortex street is a fluctuating stream with alternating eddies that is 

caused by the shedding of vortices. It is also sometimes called the Von K m a n  vortex 

street. 

Kinematic viscosity (VII-B). The normal molecular viscosity of a fluid; the kinematic 

viscosity is produced in gases by the fluctuating departures of the velocities of the 

molecules from some mean value. In liquids it @ caused primarily by the intermolecular 

forces. 

Kronecker symbol (IX-B). A second order tensor that is designated as &,j .  The 

Kronecker symbol is one if i equals j and zero otherwise. 
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Lagrangian derivative (V-C) . An expression for the rate of change of a quantity along 
the motion of a fluid. It is equal to 2 + 2~ a a x  where q is the quantity that is changing. 

The Lagrangian derivative is denoted as as opposed to 2. 
Lagrangian fluid-mechanics code (IV-A). A fluid code in which the positions of 

zones vary between time steps. As fluids are compressed and decompressed, the zones 

move accordingly, maintaining an equal mass throughout the simulation. In a Lagrangian 

calculation, the energies, momenta, and positions of the zones change from time step to 

time step; only the mass contained by each zone is held fixed. 

Mach number (VIII-E). The ratio of the velocity of a shock to the sound speed ahead 

of that shock. The Mach number is defined as 

V ME-. 
Gound 

Mach stem (VIII-E). A shock that is formed between a shock that hits an obstacle 

and the resulting reflected shock. A Mach stem is always perpendicular to the obstacle. 

Mass Matching (IV-E). In a Lagrangian calculation, the decreasing of the initial 

volumes of the denser zones and the increasing of the initial volumes of the less dense 

zones in a manner such that the masses of all zones itre equal. 

Mean flow (IX-B). The steady part of a fluid flow; the part of a fluid flow that is not 

considered turbulence. 

Modeling (IX-B). The approximation of a true transport equation with a more simple 

equation that retains the properties of the original equation but is not algebraically 

equivalent. 

Molecular Reynolds number (IX-D). The Reynolds number as calculated using only 

the molecular (kinematic) viscosity. See Reynolds number. 

Natural Convection (VIII-C). The circulating motion of fluid between regions of 

different temperatures due to the dserence in the fluid density at each of these 

temper at ures . 
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Navier-Stokes Equations (IV-B). A general term for the equations that describe the 

motion of fluids. 

Nonadvective flux (V-A). Flux in addition to the advective flux that occurs when 

quantities diffuse from one area to another. Examples of this sort of flux are pressure 

flux in the momentum equation and work flux in the energy equation. 

Nusselt Number (VIII-C). The ratio between the total heat flux in a system and the 

heat flux due only to conduction: 

Total Flux 
Conductive Flux 

Nu = (VIII-26) 

Obstacle (VIII-A). An object that prevents fluid from flowing through a specified 

subregion. 

Prescribed-temperature boundary condition (VIII-B) . A boundary condition in 

which the wall exists at a prescribed temperature. For this condition the temperature 

gradient across the wall is chosen such that the temperature at the wall remains at a 

specified value. 

Polytropic equation of state (IV-D). An equation that relates pressure to density 

and internal energy in an ideal gas. The polytropic equation of state is 

P = (7 - 1)pI * (IV-23) 

Polytropic gas constant. A variable that represents the ratio of specific heats in an 

ideal gas. The Polytropic gas constant is designated by a y. 

Probability Integral. See error function. 

Rarefaction Wave (IV-E). A wave that occurs in a region of high density when a 

barrier is removed between that region and a region of lower density. 

Rayleigh number (VIII-C). A dimensionless.number that relates the magnitudes of 

the buoyancy and viscous forces in a system. In the Benard problem, the Rayleigh 

number is calculated as 
gh3pAT Ra=- > 

UG 
(VIII-27) 
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where g is the acceleration of gravity (defined as negative if downward), h is the height 

of the passage, AT is the difference in temperatures between the top and the bottom 

of the passage, v is the viscosity of the fluid, o is the thermometric conductivity of the 

fluid, and p is the inverse of the reference temperature. 

Reynolds number (VII-E). The Reynolds number is a dimensionless quantity that 

compares the advective versus the diffusive properties of a system. It can be used to 

predict the tendency of a system towards turbulence. For the Karman vortex street 

problem, the Reynolds number is calculated as 

hobsum 
v 

Re = , (VII-94) 

where hobs is the height of the obstacle, urn is the velocity of the fluid far away from 

the obstacle, and I/ is the viscosity of the fluid. As the Reynolds number increases, the 

system is likely to become more turbulent. 

Reynolds stress tensor (IX-B). A second order tensor that serves as a measure of 

the turbulence of a system. The Reynolds stress tensor is equal to the ensemble average 

of the product of the fluctuations in fluid velocities in two directions: 

- 
I I  R, 13 . u p j  , 

where uf and u$ are first order tensors representing the fluctuations in velocities in the 

i- and j-directions. 

Shear force (IX-B). A force similar to friction that is caused by flows at different 

velocities rubbing against each other. 

Shock (IV-E). A rapid transition between two states that moves relative to the fluid. 

It is also called a shock front. 

Shock Front (IV-E). Same as a shock. 

Shock Tube (IV-E). A tube containing two fluids, usually gasses, of different densities 

that are used to study the properties of shocks and rarefactions 

202 



Single-Point Turbulence Model (IX-D). A turbulence model that relies on the 

values of quantities directly surrounding a single point to generate the turbulence values 

at that point. Such a model contains no correlations. 

Spectral Turbulence Model (IX-D). A turbulence model that establishes correlations 

between different regions in a fluid. Turbulence values at any given point are calculated 

in conjunction with these correlations rather than using only the values adjacent to that 

point. 

Staggered mesh (VU-B). A fluid dynamics computational mesh in which some 

variables exist at cell walls and others exist at cell centers. 

Streamlines (VI-D). Lines that indicate the path along which the fluid is flowing. 

Strouhal Number (VII-E). A dimensionless number that relates the period of the 

stream to the size of the object and the rate of the flow. The Strouhal number is a 

dimensionless quantity that is calculated as 

1 (VII-96) hobs 

ucorstreet 
St = 

where hobs is the height of the obstacle, urn is the velocity of the fluid far away from 

the obstacle, and r is the period of the street. In a Karman vortex street, the Strouhal 

number has been experimentally observed to be approximately 0.2. 

Taylor-series expansion (VI-C). An expansion that uses Taylor’s theorem. In a 

Taylor-series expansion, a function f (x + dx) becomes 

dx dx2 dx3 
1 2! 3! 

f (x) + - fyx) + - f”(x> + -Y(4 + * * 

where f‘, f”, f“‘, etc., are the first, second, third, etc., derivatives of the function f.  

Tensor order (E-A).  A measure of the number of directional dimensions associated 

with a quantity. A scalar, for example, has a tensor order of zero, indicating that it has 

no directionality associated with it. A vector, having a single direction, is a quantity 

with a tensor order of one. The Reynolds stress tensor, the product of two vectors, has 
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a tensor order of two. Higher order tensors exist with a number of directions equal to 

their tensor order. 

Thermometric conductivity (11-B). Notated by 0, this quantity is equal to the 

coefficient of heat conductivity of a material divided by its density and specific heat 

($) . Its units are those of an area per unit time. 

Time cycle counter (11-B). An integer that represents the number of time cycles that 

have been calculated in a simulation. 

Truncation error analysis (VI-A). A method that can be applied to determine the 

error of finitedifference approximations. Truncation error analysis involves using a 

Taylor series expansion on a fhitedif€erence approximation and comparing the resulting 

equation with the original partial-differential equation. 

Turbulence (IX-B). The fluctuating portion of a fluid flow. The part of a fluid flow 

that is not considered mean flow. 

Turbulence scale (IX-D). A measure of the size of turbulent fluctuations. The 

turbulence scale is denoted by an s and is calculated as 
K3/2 

E 
s = - +  (IX-42) 

Turbulent kinetic energy (IX-B). The kinetic energy that is present in turbulent 

fluctuations. Turbulent kinetic energy is often measured as turbulent kinetic energy per 

unit mass which is denoted by K.  

Turbulent viscosity (IX-B). Viscosity that results from turbulent fluctuations in a 

fluid. It is denoted as vt. 

Unconditionally unstable (V-B). Unstable regardless of the parameters that are 

chosen. 

Vortices (VII-E). Areas in a fluid flow where fluid is not moving along with the main 

flow but rather circling in an eddy. 

Wall function (IX-C). A function that is used to calculate K and E values at.the ghost 

zones in problems where the turbulent conditions at the boundaries are important. 
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Zone (11-A). An element of finite size that is used to represent the conditions at an 

arbitrary position in a system. A zone is also called a cell. 

205 



Acknowledgments 

We would like to thank Margaret Findley for typsetting this work and creating the figures, 

as well as Eric Harstad, Denise Hunter, and Patricia Mendius for help in editing, and 

Thomas Adams and XHM for making the publication of this work possible. We would 

also like to thank thank T-3, XHM, and Los Alamos National Laboratory for continuing 

to support research programs for students in the sciences. 

206 



This report has been reproduced directly from the 
best available copy. 

It is available to DOE and DOE contractors from the 
Office of Scientific and Technical Information, 
P.O. Box 62, 
Oak Ridge, TN 37831. 
Prices are available from 
(615) 576-8401. 

It is available to the public from the 
National Technical Information Service, 
US Department of Commerce, 
5285 Port Royal Rd., 
Springfield, VA 22161. 



Los Alamos ~~- - 
N A T I O N A L  L A B O R A T O R Y  

Los Alamos, New Mexico 87545 


	Abstract
	I INTRODUCTION
	I1 ONE-DIMENSIONAL HEAT FLOW
	A Flux and Conservation
	B Numerical Representation
	C Partial-Differential Equations
	D Computational Implementation of Equations
	E Programming and Results

	I11 NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS
	A A Graphical Explanation of the DBusional Stability Condition
	B A Mathematical Derivation of the Diffusional Stability Condition
	C Implicit Calculations
	D Computational Implementation of the Implicit Method
	E Anaytic Solution of the Heat-Flow Equation

	IV LAGRANGIAN FLUID DYNAMICS
	A Fluid Flow and Lagrangian Methods
	B Description of Equations Used in Lagrangian Fluid Flow
	C Viscous Pressure and Diffusion
	D Computational Lagrangian Fluid Flow
	E Shocks and Shock Tubes

	V EULERIAN FLUID DYNAMICS
	A Eulerian Methods and Advective Flux
	B The Equations of Eulerian Fluid Flow
	C The Partial-Differential Equations of Fluid Flow
	D Computational Implementation of Equations
	E Eulerian Results and Comparison of Eulerian and Lagrangian Simulations

	VI TRUNCATION ERROR ANALYSIS AND THE COURANT CONDITION
	A Introduction
	B Numerical Instability of the Cell-Centered Approach
	C Truncation Error Analysis
	D Truncation Error Analysis of The Donor-Cell Technique
	E Summary of Numerical Instabilities and Artificial Viscosity

	VI1 TWO-DIMENSIONALINCOMPRESSIBLEFLUIDFLOW
	A Calculations in Two-Dimensions
	B The Equations of Two-Dimensional Incompressible Fluid Flow
	C Solving Two-Dimensional Fluid-Flow Equations
	D Computational Implementation of Equations
	E Simulation of the Karman Vortex Street

	VI11 ADDITIONS TO TWO-DIMENSIONAL FLUID CODE
	A Flow Regions with Obstacles
	B Heatnansfer
	C Convection Calculations
	D Two-Dimensional Compressible Flow
	E Results of Two-Dimensional Compressible Flow

	IX TURBULENCE TRANSPORT
	A Tensor Notation
	B Turbulence Transport and K - E: Models
	C Computational Implementation of the K - E Turbulence-Transport Model
	D Turbulence Transport and the Karman Vortex Street

	Glossary
	Acknowledgments
	dx= 1.0 dt = 0.5 time =
	sigma = 1.0 dx = 1.0 dt = 0.505 time =
	Streamlines at time
	Streamlines at time


	Reynolds number of
	Streamlines at time
	Reynolds Number =
	Streamlines at time
	Reynolds Number =


