
LA-12984

RECEIVED
APR 0 4 1996
Q S T I

Introduction to Finite-Diference
Methods for Numerical Fluid Dynamics

Los Alamos
N A T I O N A L L A B O R A T O R Y

Los Alamos National Laboratory is operated by the University of California
for the United States Deparfmenf of Energy under contract W-7405-ENG36.

Edited by Patricia W. Mmdius, Group CIC-2

An Afirmafive Acfion/EquaZ Opporfunify Employer

This report was prepared as an account ofwork sponsored by an agency of the
United States Government. Neither The Regents of the University of California, the
United States Government nor any agen y thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or us+lness ofany information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the university of California, the United States Government, or any agen y thereof. The views
and opinions o f authors expressed herein do not necessarily state or reflect those of The Regents of
the University of California, the United States Government, or any agen y thereof.

Introduction to Finite-Difference
Methods for Numerical Fluid Dynamics

Evan Scannapieco
Francis H. Harlow

N A T I O N A L L A B O R A T O R Y

Los Alamos, New Mexico 87545

LA-12984

UC-700
Issued: September 1995

TABLE OF CONTENTS

Abstract . 1

I . INTRODUCTION . 3

I1 . ONE-DIMENSIONAL HEAT FLOW 6
A . Flux and Conservation . 6
B . Numerical Representation . 7
C . Partial-Differential Equations . 11

E . Programming and Results
D . Computational Implementation of Equations 13

. 17

. 22
A . A Graphical Explanation of the DBusional Stability Condition 22
B . A Mathematical Derivation of the Diffusional Stability Condition 26

. 28
D . Computational Implementation of the Implicit Method 31
E . Anaytic Solution of the Heat-Flow Equation 35

IV . LAGRANGIAN FLUID DYNAMICS 41
A . Fluid Flow and Lagrangian Methods 41
B . Description of Equations Used in Lagrangian Fluid Flow 42
C . Viscous Pressure and Diffusion . 49
D . Computational Lagrangian Fluid Flow 51
E . Shocks and Shock Tubes . 56

V . EULERIAN FLUID DYNAMICS . 66
A . Eulerian Methods and Advective Flux 66
B . The Equations of Eulerian Fluid Flow 67
C . The Partial-Differential Equations of Fluid Flow 74
D . Computational Implementation of Equations 79
E . Eulerian Results and Comparison of Eulerian and Lagrangian Simulations . 84

. . 92
A . Introduction . 92
B . Numerical Instability of the Cell-Centered Approach 93
C . Truncation Error Analysis . 94
D . Truncation Error Analysis of The Donor-Cell Technique 96
E . Summary of Numerical Instabilities and Artificial Viscosity 98

VI1 . TWO-DIMENSIONALINCOMPRESSIBLEFLUIDFLOW 100
A . Calculations in Two-Dimensions 100
B . The Equations of Two-Dimensional Incompressible Fluid Flow 103
C . Solving Two-Dimensional Fluid-Flow Equations 110
D . Computational Implementation of Equations 115
E . Simulation of the Karman Vortex Street 125

I11 . NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS

C . Implicit Calculations

VI . TRUNCATION ERROR ANALYSIS AND THE COURANT CONDITION

V

. .. c .. -.-. ...
, ., ..
1. t . , .

VI11 . ADDITIONS TO TWO-DIMENSIONAL FLUID CODE

B . Heatnansfer .
C . Convection Calculations .
D . Two-Dimensional Compressible Flow
E . Results of Two-Dimensional Compressible Flow

IX . TURBULENCE TRANSPORT .
A . Tensor Notation .
B . Turbulence Transport and K - E: Models
C . Computational Implementation of the K - E Turbulence-Transport Model
D . Turbulence Transport and the Karman Vortex Street

A . Flow Regions with Obstacles .

Glossary .
Acknowledgments .

133
133
139
147
157
162

172
172
174
179
186

196

206

vi

INTRODUCTION TO FINITEDIFFERENCE METHODS

FOR NUMERICAL FLUID DYNAMICS

bY

Evan Scannapieco and Francis H. Harlow

ABSTRACT

This work is intended to be a beginner’s exercise book for the study of basic finite-

difference techniques in computational fluid dynamics. It is written for a student level

ranging from high-school senior to university senior. Equations are derived from basic

principles using algebra. Some discussion of partial-differential equations is included, but

knowledge of calculus is not essential. The student is expected, however, to have some

familiarity with the FORTRAN computer language, as the syntax of the computer codes

themselves is not discussed. Topics examined in this work include: onedimensional heat

flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and

two-dimensional incompressible fluid flow with additions of the equations of heat flow and

the K - E model for turbulence transport. Emphasis is placed on numerical instabilities

and methods by which they can be avoided, techniques that can be used to evaluate the

accuracy of finitedifference approximations, and the writing of the finitedifference codes

themselves. Concepts introduced in this work include: flux and conservation, implicit and

explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell

and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq

approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for

the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided

which defines these and other terms.

1

2

I. INTRODUCTION

One of the most important techniques used in the computer modeling of physical

systems, finite differencing represents an essential part of modern theoretical physics.

Able to generate solutions to systems that are f a too intricate to be solved analytically,

this technique has given physicists the ability to model, examine, and better understand

complex physical situations. From the study of microscopic systems to the modeling of

the world’s climate, finite-difference programs have opened up an entire field of research

that has only been possible within the the past 40 years.

In the following paper we will examine a series of finitedifference programs, gaining a

clearer understanding of their underlying physical principles and the techniques by which

these are implemented. It is our intention to represent these physical systems so that they

will be easily understood both by those who are dealing with them for the first time and

those familiar with their partial-differential representations. Partial differential equations

will be used but only as a result of a discussion of the basic principles from which they are

derived. The mathematics will follow, as it should, from a clear set of physically meaningful

observations ._
It will be essential, however, for the reader to have a clear understanding of the

FORTRAN computer language in which all programs will be written. While there are many

finite-difference simulations that are written in other languages, FORTRAN has proved to

be an efficient, easily understood, and widely accepted language for scientific computing.

For these reasons we will limit our discussion to simulations written in this language, and

for reasons of scope we will not discuss the meanings of each of its commands. We assume

that the reader is already familiar with computers and desires to apply this knowledge

to the study of physical systems. It is our intention to apply physical principles to the

creation of computer simulations, not to discuss the syntax of the simulations themselves.

There are two ways to approach this work. It can be interpreted as a guide to writing

one’s own finite difference simulations, a type of handbook for creating one’s own codes, or

3

it can be read as a textbook, omitting actual programming by the reader. We hope that

the reader will adopt the former approach. While it will take more time for the reader to

create his own simulations, the extra time will prove to be time well spent.

The reasons for writing one’s own code are twofold. First, the reader who is able to

structure his own code will be sure to have a full understanding of the concepts involved.

There is only so much that can be explained about the process; true understanding will

result only from experience. Secondly, by writing his own programs, the reader gains the

advantage of being able to examine the results obtained from various initial parameters.

Only a limited number of results will be presented in this work, thereby leaving the reader

with a vast set of cases which can be independently investigated.

As we move through this series of programs, we will examine a broad spectrum of

physical systems. We will begin with the simulation of heat transfer in one dimension,

examining various forms of numerical instabilities and explicit and implicit solution

techniques. Our discussion will then move to compressible fluid flow in one dimension,

examining both Eulerian and Lagrangian methods of simulation of a number of different

systems. We will show a method for determining the accuracy of our finite-difference

representations and use it to examine numerical instabilities. We will discuss the

simulation of incompressible fluid flow in two dimensions, calculate incompressible fluid

flow in conjunction with heat, discuss two-dimensional compressible fluid flow, and finally

implement the equations of turbulence transport in an incompressible code.

Likewise, our discussion will cover an equally broad set of topics in a range of technical

fields. We will discuss various physical equations and the systems that they represent, the

mathematical properties of these equations and how these relate to solving them with a

computer, and the structuring of the programs themselves. Although we will be dealing

with these varying subjects, a single underlying thrust must remain clear in our minds.

We must remember that what we are doing is taking observable physical phenomena and

4

translating them into terms which can be dealt with by the computer. The form will be

greatly changed, but the basic physical principles will always be faithfully represented.

In as much as we can simulate reality, we can use the computer to make predictions

about what will occur in a certain set of circumstances. Finite-difference techniques

can create an artificial laboratory for examining situations which would be impossible

to observe otherwise, but we must always remain critical of our results. Finitedifferencing

can be an extremely powerful tool, but only when it is firmly set in a basis of physical

meaning. In order for a finite-difference code to be successful, we must start from the

beginning, dealing with simple cases and examining our logic each step of the way. Building

further insights on what we have done in the past, we will start with the simplest case

possible: heat transfer in a single dimension. The rest will follow logically.

5

11. ONEDIMENSIONAL HEAT FLOW

A. Flux and Conservation

The first system that will be examined in this series of studies is that of heat conduction

in a single dimension. In this chapter, we will write a program that numerically solves

a single equation of heat transfer over a onedimensional array. This program can most

easily be pictured as the simulation of a metal rod that is initially at an even temperature

and is insulated along its sides. As the program progresses, the simulated rod is heated

from one end, and the resulting change in temperature along the rod is recorded as output.

A diagram of this system appears in Fig. 11-1.

insulation 1
heat source

a
t

Fig. 11-1

Each section of this rod is represented by an element in an array that corresponds

to its position. These elements, called ZONES, record the temperature at finite distances

along the rod and at finite time intervals, hence the name f inite diflerence. This type of

representation can be thought of as similar to a motion picture, where each frame exists for

a small but finite time step. Motion is not fluid as in reality but is instead approximated

by a series of small changes from one “frame” to the next.

Our simulation of heat flow in this manner will introduce two basic concepts that are

essential to the understanding of the underlying principles on which many finitedifference

6

codes are based: FLUX and CONSERVATION. Flux is the amount of something passing

through a unit area in a unit time. In our current example, the flux that is of interest is

HEAT FLUX, the transport of heat from one zone to another. But flux is by no means

limited to only heat. It can represent the movement of mass, momentum, energy, or any

other value that describes the amount of something that is present in a zone. No matter

what is being fluxed, the concept remains essentially the same. Flux represents motion

from one place to another, the rate at which something moves through a given area.

Conservation means that the total amount of something never changes regardless of

its motion &om one region to another. If this same concept is viewed in terms of the

amount of something that exists in a finite region, conservation means that in any region

of space the change in something equals the amount that goes in minus the amount that

comes out plus the change of that amount within the region. Once again, this principle

holds true for many different quantities. Mass, momentum, and energy, while different

physically, are identical in the fact that they are conserved.

These two concepts of flux and conservation are critical to the way that our finite

difference codes are structured. Their implementation and a simple equation obtained

from experimental observation are all that is necessary to represent the transfer of heat

numerically.

B. Numerical Representation

In order to represent this system in a manner that can be solved computationally,

we must first examine the structure represented by each zone in our simulated metal rod.

Looking at an individual zone (also called a CELL), we find a physical system as in Fig. 11-2.

7

I d I I I

\
T-rig ht

Y
%left

Fig. 11-2

Here T-left and T-right represent the temperature along either edge of the zone, and d

represents the thickness. The heat flux of this system is defined by an equation known as

Fick's Law. A result of direct experimental observations, Fick's Law is as follows:

k (zeft - Tright)

d
flux of heat = (11-1)

In this equation, k is called THE COEFFICIENT OF HEAT CONDUCTIVITY and

is proportional to the rate at which a given material conducts heat across a temperature

gradient. k is an intrinsic property of the material being represented and must be

chosen based on the conductive properties of that material. For example, silver, a very

conductive metal, is represented by a high value of I C , around 4 J/s-cm- "C. Wood on the

other hand, is a poor heat conductor and is consequently associated with a low k value,

1.3 x J/s.cm. "C. The conductivity of iron is somewhere between these two materials,

yielding an intermediate value for k, 0.67 J/s-cm- "C.

Taking this equation as it applies to a single cell, we can now make a generalization

a s to how it can be implemented over an array. Given a rod of length D , this length can

be divided into an array of size 5. Each zone will now have a length dx, which is defined

as D / j . Such a system is shown in Fig 11-3.

8

I I
D

Fig. 11-3

Each zone in this array can now be indexed with a counter j, with zones j - 1 and

j + 1 being the zones at the left and right respectively. Note that the flux between zones

will occur at the walls and will therefore occur at points such as j + 1/2 and j - 1/2 in

the diagram. Note also that the diagram contains both a zone 0 and a zone + 1, existing

beyond the normal bounds of the rod. These zones are used to implement BOUNDARY

CONDITIONS, equations that represent the external conditions that affect the values of

the real zones. The heating source at the left of the pipe is represented by one such

boundary condition. Temperatures for each cell are defined at the center of the cell,

existing at positions 1, 2, 3, etc. Density of cells and cross-sectional area between cells are

defined as p and A respectively.

These definitions can be used to write an expression for the heat energy contained in

any given cell:

Volume = A dx

Heat energy of cell j = Mass b T’ ,

where b = the specific heat of the material. As

Mass = Volume density = A dx p ,

(11-2)

(11-3)

(11-4)

the heat energy can also be written as

9

Heat energy of cell j = A dx p b Tj . (11-5)

We now apply our conservation of energy principle to derive an equation for the

change in energy. The letter n will be used as a TIME CYCLE COUNTER, an integer

that represents the number of time cycles that have been calculated. These cycles, also

called time steps, can be thought of as individual frames in our analogy of the motion

picture. The time at a cycle n is represented by tn, which is computed as follows:

tn = n d t . (11-6)

In this equation d t is equal to the time increment per cycle, i.e., the change in time between

each “frame.” The superscript n in tn notates that the value being expressed occurs at time

cycle n. It does not indicate t raised to the power n. We will continue to use superscipts

in this manner, combining them with the subscripts used earlier to represent position. 2’’

will therefore be defined as the temperature in cell j at time step n, and similarly, T’+’

will represent the temperature in cell j at the time step n + 1.

By using this notation and assuming that our heat source is always placed at the left,

energy conservation can be expressed as

[Heat Energy];+’ - [Heat Energy]: =

[Amount in]jn_,,, - [Amount OU~]:+~/~ .

Referring now to our principle of flux:

[Amount = [Flux]:-,,, A dt

and

[Amount ~ u t] j n + ~ , ~ = [F~LIX]:+~/, A d t

(11-7)

(11-8)

(11-9)

10

Using Fick’s law to determine flux at j + 1/2 and j - 1/2, and using the equation for heat

energy of a cell (11-5), we can express Eq. (11-7) as follows:

(Tjn-Tn)
A d t . (11-10) A p d x b q+l - A p d x b Tj” = k (TT-1- Tjn) A d t - k J + 1

d x d x

This equation can be algebraically manipulated to obtain

kdt
~ ? + l - J T; = <T-1 - Tj” - T + T+,) . (11-11)

LL is often called the THERMOMETFUC CONDUCTIVITY of a material and is
bP

represented by the Greek letter 0. Thus, our conservation equation in final form appears

as follows:

(11- 12)

This equation expresses heat flow in a manner that can be computationally solved.

Based upon our knowledge of the previous time step, this equation allows us to calculate the

new temperatures for every zone along the rod. By carrying out this equation repeatedly,

the overall flow of heat can be observed.

Based on our discussion so far, it is now possible to begin writing the finite-difference

code itself; but before this process is begun, let us first examine the nature of our equation.

Although this equation has been generated from basic principles, it is obtained more

often through the manipulation of partial differential equations. While not necessary to

the writing of simple finite-difference codes, these partial-differential equations (P.D.E.’s)

give scientists greater insight into simple systems and allow for analysis of much more

complicated physical phenomena. Because these equations are continually being applied

to finite-difference codes, it is important that they be examined and related to the problem

at hand.

C. Part id-Different ial Equations

For those familiar with partial-differential equations and their use, the following

discussion of heat flow in analytical terms will serve to provide a different viewpoint into

11

the construction of our finite-difference codes. However, this section is not essential to

the writing of this code and should, therefore, not deter the reader who is unfamiliar

with these expressions. Such a reader should try to work through these concepts without

intimidation; they are merely provided as an alternate method to examining this problem.

Going back to Eq. (11-11) and distributing the dx2 term among the temperatures, we

obtain the following equation:

= o
Tj"+ -Tj" Tj" -Tj"-

d x 1 . - [dx dx (11-13)

By changing our nomenclature to more clearly represent T as a function of position and

time, we can rewrite T' as T(xj , t"), q+l as T(xj + dx, t"), and q y + l as T(xj, t" + dt).
Our equation now takes the form

1 - T (x j + d X , t ") - T (x , ,t") - T (x , ,t") - T (x ~ - d x , t n) T (z j , tn + d t) - T (x ~ , t") d x
d t dx

L

Using the definition of the derivative of f (x) , namely

we take the limit as dt and dx -, 0 and obtain the following terms:

T (x ~ , tn + d t) - T (x ~ , t") 82"
d t at - - - lim

dt+O

T (x ~ + d ~ , t") - T (x ~ , t")
lim

dx+0 dx

T (x ~ + t") - T (x ~ - dx,t")
lim

dx+O dx

Thus Eq. (11-14) can be rewritten:

J

(11- 14)

(11-15)

(11- 16)

(11- 17)

(11-18)

12

Once again taking the limit as dx - 0:

dT d2T
at ax2 ’
- = g- (11- 19)

This is the heat-flow equation for a single direction. Starting with this equation, one

would have been able to work backwards, choosing “finite differences” for each derivative

and eventually generating Eq. (11-12). Derived from the same principles as our finite-

difference equations, partial-differential equations provide a different outlook from which

to approach computation.

D. Computational Implementation of Equations

Having derived an expression for heat flow in finite-difference form, the question still

remains of how it will be computationally implemented. To complete this final stage

in the writing of our code, three major issues must be examined: boundary conditions,

redefinition of variables, and the structure of the program itself.

Our first major issue is the construction of boundary conditions. As was previously

discussed, boundary conditions represent the external conditions that act to change a

system. This representation is accomplished by the placing of zones beyond the normal

boundaries of the array. The values of these FICTITIOUS ZONES or GHOST ZONES are

chosen in such a way that they accurately express the external environment of the system

in question. In this chapter, the conditions to be simulated will be a heat source at the

left and an uninsulated area at the right of the rod.

While the temperature in each true zone within the rod will be determined by

successive calculations of Eq. (11-12), the values at the fictitious zones will be calculated to

represent fixed temperatures at either end of the array. In order to determine these values,

consider the situation at either end of the array as represented in Fig. 11-4.

13

.

I - - -
I
I
I
I - - -

T, 5 . . .

Fig. 11-4

In this diagram, Tt represents the temperature along the left end of the rod, the

value that should remain constant throughout the simulation. Although not present in

the actual array, this constant temperature can be thought of as T 1 / 2 , the average of the

temperatures at zone TI and ghost zone TO. Therefore TL can be expressed as follows:

To + Tl
2 TL =

Solving this equation for TO!

(11-20)

(11- 2 1)

Similarly, if TR is defined as the temperature along the right end of the rod, Tj+l can be

expressed as follows:

(11-22)

By implementing these two equations, boundary conditions can be expressed for both

the left and right of the system. Expressions for the other surfaces of the rod will not be

needed, as they are assumed to be completely insulated, thus reducing the problem to one

dimension.

The second major issue in solving of Eq. (11-12) computationally is the redefinition of

variables. Thus far in this chapter, our equations have been represented in a manner that

is not accepted by the FORTRAN programming language. Therefore certain modifications

14

must be made in the way that various variables are represented; they must be redefined

in terms of computationally accepted symbols:

7 = jbar

= sig

T', the temperature at zone j at time cycle n, will now be defined as T(j), an element in

an array T defined from T(0) to T(jbar +1). Likewise, q+' will be defined as Tnew (j),

an element in an array defined from Tnew (1) to Tnew (jbar).

The following new variables will also be defined:

TO the intial temperature of the rod

stime E the time at which the program ceases to run

ptime the time between successive displayings of the

values of the zones in the array

pt = a counter for ptime

st = a counter for stime

Our finite-difference code will be divided into five sections, each with a clearly defined

task. The first of these sections is the initialization procedure that dimensions the arrays

and assigns initial values to all variables. This initialization is done in a subroutine that

is called only once at the beginning of the program.

The second section of our code sets up a loop that repeats each time cycle. This section

determines if the time counters pt and st have reached ptime and stime respectively and

then increments the counters. If pt has reached ptime, it is reset to zero, and the current

array of zones is sent to the output subroutine. If st reaches stime, the program terminates.

The third major section is the definition of boundary conditions, which occurs after

the test for ptime and stime and before the actual computation of the next time cycle. In

our particular program, this section should carry out Eq. (11-21) and Eq. (11-22) on the

array T , updating values for the ghost zones at each time cycle.

15

The fourth section is the portion of the program that implements Eq. (11-12), which

also occurs within the time-counting loop. This implementation is made up of two loops,

the first of which assigns Tnew according to this equation, and the second of which transfers

the values of Tnew back into T. The code for this section is as follows:

do 100 j =1, jbar

Tnew(j) = T(j) + sig*dt/dx**2 * (T(j+l) + T(j-l)-2*T(j))

100 continue

do 200 j=1, jbar

T(j) = Tnew(j)

200 continue

This two-loop structure is essential to the successful computation of T at the new

time step. If one were to forego the computation of Tnew and directly compute T, the

temperature terms at the right hand of the equation would not exist at the same time cycle.

While T(j+l) and T(j) would still be at time n, T(j-l), having already been computed in

the previous iteration of this do loop, would exist at time n + 1. By creating a second

array and moving these values into T after they are all computed, we are able to avoid

this problem.

The final section in our code is the output subroutine, which occurs when pt=ptime.

This procedure could contain various graphics routines, write results to an output file, or

simply display the various array values on the screen. A diagram of these sections and

their interactions appears in Fig. 11-5.

16

el 1. Initial Conditions

13. Boundary Conditions I

I I

Fig. 11-5

E. Programming and Results

We have now reached a point where the reader should be able to write his own finite-

difference code for heat transfer. In this work a limited series of examples are examined in

order to demonstrate the output of our code.

Figures 11-6 through 11-10 below show the results of a simulation of an insulated

rod that is originally at O"C, with a fixed temperature at the left (T') of 400"C, fixed

temperature at the right (TR) of O'C, a thermometric conductivity (a) of 1.0 m2 per sec,

a zone length (dz) of one meter, a j of 50, and a time step (d t) of 0.1 seconds. Results are

shown at 10, 50, 100, 250, and 1000 seconds.

17

i.,
Temperatures along rod
sigma = 1.0 dx= 1.0 d t = 0.1 time = 10

Distance along rod (m)

Figure 11-6

Temperatures along rod
sigma = 1.0 dx = 1.0 dt = 0.1 time = 50

Distance along rod (m)

Figure 11-7

- Temperatures along rod
07, sigma = 1.0 dx = 1.0 d t = 0.1 time = 100

Distance along rod (m)

Figure 11-8

18

Temperatures along rod
9

sigma = 1.0 dx= 0.1 dt = 1.0 time = 500

Q)
Fc

Q O Et d -

U

I I I I

h

52

time = 500

Distance along rod (m)

Figure 11-9

0 Temperatures along rod
sigma = 1.0 dx = 0.1 dt = 1.0 time = 1000

I

-
"

a
R
- -
a
1 I I I 1
a .o @=$ IE.0 n k 60.D

Distance along rod (m)

Figure 11-10

Notice how the zone temperatures approach a straight line a s the simulation progresses.

Such a line is the final steady-state solution of this system, regardless of thermometric

conductivity. Solutions at earlier time steps can be approximated using Eq. (111-55), which

is derived at the end of Chapter 111.

19

In the next three graphs, the effects of changes in time step are shown in relation to a

simulation which is otherwise identical to the one above. Figure 11-11 shows a temperature

curve for a system at a time of 100 seconds with a time step of 0.495, just under 1/2.

Temperatures along rod
sigma = 1.0 dx = 1.0 dt = 0.495 time = 100

I
0 .D 1 2 1 I3 a 376

Distance along rod (m)

Figure 11-11

This figure is almost identical to Fig. 11-8, indicating that there is little difference

between the results obtained with a time step of 0.1 and the results obtained with a time

step of 0.495. Results are quite different, however, when a time step of 0.5 is used, as in

Fig. 11-12.

0
0 Temperatures along rod

sigma = 1.0 dx = 1.0 dt = 0.5 time = 100

0

1 %) Z3.D SI. I sa .D
-

QD

0
0 Temperatures along rod

sigma = 1.0 dx = 1.0 dt = 0.5 time = 100

0

1 %) Z3.D SI. I sa .D
-

QD

Distance along rod (m)

Figure 11-12

20

The stair-step type temperatures that can be seen in this graph are a result of a

numerical instability, This instability becomes even more violent when the time step is

further increased to 0.505, as in Fig. 11-13.

Temperatures along rod
sigma = 1.0 dx= 1.0 dt = 0.505 time = 100 P =1 I

Distance along rod (m)

Figure 11-13

Notice that in this figure the highest temperatures are much greater than 400"C, whereas

the lowest temperatures are below -250°C. Obviously, this does not accurately represent

the transfer of heat down the rod.

The numerical instability seen in Figs. 11-12 and 11-13 arises whenever the quantity

$ is greater than 1/2. The presence of this instability means that the more accurately

one wishes to resolve a set of circumstances, the shorter the time step that must be chosen.

This problem highly limits the sorts of cases that can be simulated, yet there is a method

by which it can be overcome. The following chapter examines this numerical instability

and discusses the use of an implicit method of solution-a method that increases the speed,

accuracy, and applicability of our finitedifference codes.

21

111.

A.

NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS

A Graphical Explanation of the Diffusional Stability Condition

In the cases presented at the end of the last chapter, we discovered that our finite-

difference code is numerically unstable when the value of 2 exceeds 1/2. This constraint

is known as the diffusional stability condition, and it is one of two important conditions

that we will examine in our series of finite-difference codes.

Consider the simplest case possible for our simulation: that of a rod at a constant

temperature, To, with this same temperature at either end. Now consider the case in which

this system of constant temperatures is perturbed by slightly increasing the temperatures

of the odd-numbered zones by an amount E and slightly decreasing the temperatures of

the even-numbered zones by the same amount. The result is a system such as depicted in

Fig. 111-1.

>I 5 . .
I 2 3 4

Zone

Fig. 111-1

Let us now chose an odd numbered zone, j , and examine the calculation of its

temperature at each time step. We begin with

(11- 12)

22

and substitute our new definition of T to obtain

adt T?+l = To + E + 2 [To - E + To - E - 2(To + E)] 7
3 dx

which can be reduced to

or

Tn+l=To+E 3 [1-- -

(111-1)

(111-2)

(111-3)

If a constant 5 is defined such that
4adt C E -
dx2 '

our equation becomes

Zy+1 = To + E[1 - 51 . (111-4)

Note that 5 in this equation is made up of all positive components; therefore, 5 > 0 and

(1 - 5) < 1 in all circumstances.

These constraints leave us with four cases to examine, the first of which occurs when

0 < 5 < 1. In this case, 1 - 5 is a fraction between 0 and 1. q+' is therefore computed

as TO + E (fraction), yielding a value closer to TO than the previous time step. Subsequent

iterations of this equation generate a series of temperatures such as shown in Fig. 111-2.

c = 113

I I I I I 1 1 I

1 ' 2 ' 3 1 4 1 5 ' 6 ' 7 I . . .

Time Step

Fig. 111-2

23

In this case, the temperature converges towards To, moving towards the array of constant

temperatures that defines a correct solution.

In our second case < = 1, leaving us with the equation 2"''' = To. The graph of this

case converges immediately, as illustrated in Fig. 111-3.

Time Step

Fig. 111-3

Our third curve is similar to the first and occurs when 1 < E < 2. When this is true,

1 - is again a fraction, but this time it is a number between 0 and -1. The result is a

set of values which alternate above and below T' but converge toward that value as shown

in Fig. 111-4.

r,

t = 1.5

0
I I I

I I I I
1 2 3 4 5 . . .

Time Step

Fig. 111-4

24

A corollary to this case occurs when < = 2. For this value the graph oscillates but

does not converge, as in Fig. 111-5. This case, while not convergent, is still considered to

represent the bounds of numerical instability.

6 = 2.0

0 0 0

1 2 3 4 5 . . .
I I I I I

Time Step

Fig. 111-5

Our fourth and final case occurs as soon as this bound is crossed, when < > 2. In this

set of circumstances 1 - < < -1, yielding values of Tn+l that not only oscillate but diverge

from the correct solution. The graph of temperatures appears as in Fig. 111-6, with values

diverging until the program is terminated.

0

0 5 = 2.5

*& To
a

0
I 1 I I I

I I I
1 I 2 l 3 ' 4 5 .. .

Time Step

Fig. 111-6

25

In order to avoid this condition, as well as the stable but nonconverging state pictured

in Fig. 111-5, we must choose < such that [< 2. Referring to our definition of [as m,
we obtain

40dt

4 a d t
d x 2 < 2 ,

which is the diffusional stability condition

a d t 1
d x 2 2 < - . -

(111-5)

(111-6)

We have therefore demonstrated graphically that this condition must be met for a solution

to converge.

B. A Mathematical Derivation of the Diffusional Stability Condition

Once again, we will turn to a mathematical explanation to reinforce an argument that

has been made graphically. This section, like section 11-C, is not essential to the writing

of our codes; it is simply another method of arriving at the diffusional stability condition

and better explaining the manner in which it can be overcome. Again, one should follow

as closely as possible, gaining familiarity with the application of various mathematical

methods towards this problem.

We will begin with the heat-flow equation as expressed in Eq. (11-12), this time

substituting our definition for 5:

Let us examine the behavior of T’, with the following trial solution:

= ~ , i k j d x i w n d t e 3

(111-7)

(111-8)

Here T’, represents T at a time step n and zone j, whereas ei k j d z and ei dt represent e

raised to i k j d x and i zu n d t respectively, where i is the imaginary number. If r is defined

as

26

Eq. 111-8 becomes

From this equation, we see that r must be between 1 and -1 for Ty to converge.

If r > 1, the solution will diverge monotonically, moving farther and farther towards

either positive or negative infinity. If r < -1, the solution will diverge in an oscillatory

manner, alternating between positive and negative values but always moving away from

convergence.

Keeping these restrictions on r in mind, let us now use our test definition of Ty to

substitute for temperature terms in Eq. (111-7):

Dividing both sides by Aei ‘ jdXrn gives

r = l + - E [e i kdx + e - i kdx -23 . 4 (111-11)

Using the identity eis = cos 8 + i sin 8 we can rewrite this equation as

r = 1 + - E [2coskdz - 21 (111- 12) 4

or

E r = l - - [l - c o s k d z] .
2 (111-13)

Consider the extreme cases for the coskdx term, namely coskdx = +1 and -1. If

coskdz = +1, then Eq. (111-13) reduces to r = 1, a valid statement according to the

restrictions that we have placed on r. This case poses no problems.

Taking the other extreme, cos kdx = -1, we are left with

r = l - E . (111-14)

27

Because < is always positive, T can never exceed 1 in this case. It can, however, be less

than -1, a problem which places the following condition on <:

- 1 < 1 - c

or

< < 2 .

(111- 15)

(111- 16)

Using our definition of c , we find that Eq. (111-16) is simply another statement of the

diffusional stability condition:
adt 1 < - dx2 2
- (111- 17)

Our analytical method arrives at precisely the same result as the pictorial analysis; the

diffusional stability condition must be met in order to ensure numerical stability.

C. Implicit Calculations

We have now derived the diffusional stability condition mathematically as well as

graphically and have demonstrated that it is essential to the numerical solving of Eq. (II-

12). It is possible, however, to solve the heat-flow equation numerically without meeting

this condition, by expressing the < terms of the heat-flow equation at time n + 1 rather

than at time n. In this method, heat flow is not represented by Eq. (11-12)) but instead

by the following:

(111-18)

Let us now examine this equation mathematically as we did in Section B. Inserting a

similar trial solution and dividing by Aei ICj dzrn, we obtain

or

t
4

7- = 1 + - [2rcoskdx - 27.1)

28

(111- 19)

(111-20)

which can be algebraically manipulated to obtain

1 r =
1 + 5 (1 - cos kdx) *

(111- 2 1)

Examining the upper and lower limits for cos kdx, we find that

r = l (111-22)

or
1 (111-23)

Because [is always positive, r will be between 0 and 1 in all cases, indicating that

our solution will be numerically stable regardless of the value of g. Equation (111-18)

will therefore remain stable at any resolution and time step; all that remains is to solve it

numerically.

Equation (111-18) represents an IMPLICIT METHOD of calculation. In this method,

values at the new time cycle are not directly calculated from old values as they were in

the EXPLICIT METHOD used in the previous chapter. They are instead calculated using

an iterative process that begins with a trial solution and modifies that solution with each

iteration until it has converged to within a specified value. In our program this iteration

will be done using Newton’s Method.

Newton’s Method is an iterative process that uses successive approximations to solve

an equation in the form f (2) = 0. In Newton’s method a trial value for x1 is first chosen,

then the following equation is applied iteratively:

(111-24)

This equation generates successive approximations for x, each more accurate than the one

before it. When 2 has converged to within a specified range, xn is then taken as the final

solution.

29

We can better understand how this method arrives at a solution by examining an

example equation, f (x) = x2 - 2. Choosing x1 = 2 as a trial value, we will let the solution

converge to within three decimal places.

2 2, - 2
X n + l = X n - - 9,

21 = 2.000

2 2 = 1.500

2 3 = 1.466

24 = 1.414

25 = 1.414

A plot of these values along the graph of the equation appears in Fig. 111-7.

2
I

X

Fig. 111-7

(111-25)

1

X .

This figure illustrates how one solution is used to obtain the next. The tangent is

used to approximate the graph of f (x n) at the value xn, and xn+l is given the value of

30

x for which the tangent crosses the x-axis. This value is then substituted for x and the

process is repeated until it has converged.

Let us now apply this process to Eq. (111-18). Expressing this equation as a function

of T’+’, we obtain

f (q?+1) = T’t-1 - ly -

Taking now the derivative with respect to T+’, 3 we find that

2adt
dx2

f’ (q+1) = 1 + - -

Using both of these definitions in Eq. (111-24), we are left with the final

f (q % g u e s s) q+l (new guess) = T;+l (old guess) - (2adt I)
1 + 2 F

By using this formula iteratively, we can now compute values for q+’
a dt
dx2
-

D. Computational Implementation of the Implicit Method

Now that we have developed an implicit method for use in solving

(111-26)

(111-27)

formula:

(111-28)

for any values of

the heat-transfer

equation, we can implement this method on the computer. We will do this by making

small modifications to the heat-transfer code that has already been written.

We begin by defining a constant beta that is set during the initialization procedure.

Beta is defined as
1

and is used to avoid successive calculation of the denominator in Eq. (111-28) during

iterations of Newton’s method. Also in this procedure, we define a constant ftest that

is equal to the margin of error to which our iterative procedure will converge. Typically

ftest has a value of approximately 0.001 times some maximum value of T in the problem.

Besides these two definitions in the initialization procedure, most of the major

modifications to the program occur in the computation section (referred to as Section 4

31

in the previous chapter). This section in its explicit form should be removed and replaced

with an implicit section of code.

This implicit section should consist of a loop that makes the initial guesses for the

temperatures at time n + 1 and a loop that iterates until the values of Tn+’ have converged

to within ftest. The first loop is simply a do loop that defines the initial guesses for the

new temperatures as the temperatures at the old time step. Thus,

Tnew(j) = T(j) . (111-29)

This loop is then followed by an until loop that is constructed in the following manner.

At the beginning of each iteration, a value fmax is set at zero. After this statement, the

program moves into another loop that calculates f (T) along every point along the rod

and uses these values to calculate the next guess for the new temperatures. Also in this

loop, the largest absolute value for f(T) is stored in the variable fmax. After this loop,

the program makes a check to see if fmax is less than ftest. If ftest is larger, the until loop

ends; if fmax is larger, the loop is repeated. The code for this loop should be similar to

the following:

100 fmax = 0.

do 200 j= 1,jmax

f = Tnew(j) - T(j) - (sig*dt/(dx*dx)) * (Tnew(j+l)+ T (j-1) - 2*T(j))

fmax = amaxl (abs(f),fmax)

Tnew(j) = Tnew(j) - f * beta

200 continue

if (fmax.gt.ftest) then goto 100

Notice that all the T terms on the right of the equation that sets f are actually

temperature values at the present implicit iteration. T’s and Tnew’s are mixed due to the

structure of the loop. Optionally, a counter for the number of iterations of the until loop

can be added, terminating this iterative process when a maximum number of iterations is

reached, regardless of the values of fmax.

32

When this loop has finally terminated, the T array is redefined with the values from

the Tnew array, and the program moves on to the next time step. All other sections

remain in the same form as in our original program. No other modifications are necessary

to create a fully-implicit version of our one-dimensional heat-transfer code.

Start I
1. Initial Conditions

1 3. Boundary Conditions 1

fmax-= ftest

Fig. 111-8

33

By using the implicit code with the same set of parameters as were present in Fig. II-

12 (TO = O'C, TI = 4OO0C, T, = O'C, 0 = 1m2/sec, dx = 1 m, 3 = 50, d t = 0.5 sec, time

= 100 sec: e = 0.5), the results shown in Fig. 111-9 are obtained.

dx= 1.0 dt = 0.5 time = 100
Temperatures along rod

0

0 - I
BD la .I a;o W L I D .D

Distance along rod (m)

Fig. 111-9

This figure helps to illustrate the numerical stability of this method. The system

remains stable at a time step of 0.505 ($ = 0.505), as indicated in Fig. 111-10.

Z Temperatures along rod
=\ sigma = 1.0 dx = 1.0 dt = 0.505 time = 100

0
I I 1
125 S i b 81 E Mb =-I a0

Distance along rod (m)

Fig. 111-10

Even at a time step of 10 sec, where is equal to 10 and only 10 time cycles are

computed up to time 100, the system remains numerically stable. The results in Fig. 111-11

34

below appear almost identical to those calculated explicitly in Fig. 11-11, yet the time step

used is over twenty times as large.

0 Temperatures along rod
sigma = 1.0 dx = 0.1 dt = 10 time = 100

Distance along rod (m)

Fig. 111-11

We see through example that implicit methods are able to generate results for sets of

parameters that are numerically unstable when calculated explicitly. This technique will

prove essential in later simulations, preventing the first of two major numerical instabilities

that we will examine in our series of exercises.

E. Analytic Solution of the Heat-Flow Equation

In this section, we will be manipulating the heat-flow equation in order to generate

an analytic solution that can be used to check the validity of our computational results.

Once again, following the manipulation of this partial-differential equation is not essential

to making use of the derived solution.

We begin with Eq. (11-19), the one-dimensional heat-flow equation in partial-

differential form
dT d2T
at dX2
- =(J- (11- 19)

and make the assumption that T is a function of the single dimensionless quantity that

includes 0, x, and t:

(111-30) T = T(J)

35

where

By making this definition,

length of the rod does not

we are assuming that the rod is of infinite length, so that the

enter into these parameters. This assumption is made because

the derivation of a solution for a finite rod is a much more involved process than a solution

for the infinite case. For our purposes an analytic solution to the infinite rod case will

prove to be sufficient.

Using Eq. (111-30), we can obtain expressions for its partial-derivatives. Differentiating

with respect to t we obtain

Differentiating to obtain the second derivative with respect to x gives us

and

Equations (111-31) and (111-33) are substituted into Eq. (11-19) to obtain

or ---=-([d T d d T) *
2 d< d<

If we define a variable y such that
d T
d e

Y E - -)

(111-31)

(111-32)

(111-33)

(111-34)

(111-35)

Eq. (111-35) becomes
< dY
2 dJ --Y = - (111-36)

36

or

which can be integrated to obtain

c2

where C is a constant.

Exponentiating both sides of this equation gives us:

or
2 e 4 = y K 1 ,

(111-37)

(111-38)

(111- 3 9)

(111-40)

where K1 is a constant. We then use our definition of y and multiply both sides of the

equation by d e to obtain

e$d< = K1dT.

This can be integrated to obtain

(111-41)

(111-42)
E 1

where K2 is another constant. If we choose 41 to represent at a distance of zero from the

end of the rod this equation becomes

2 -

(111-43)
0

which can be simplified by defining a variable z such that

37

Equation (111-43) then becomes

(111-44)

To determine the values K1 and K2, we examine two test cases. In the case where z

is 0: the temperature is equal to that of the wall at the left

e - z2dz = K ~ T L + K2
0

or

K2 = - (K ~ T L) .

end of the rod. We then have:

(111-45)

(111-46)

In the case where we are at an infinite distance from the heat source at one end of the rod,

the temperature is equal to the initial temperature specified for the rod:

e -Z2dz = KIT0 + K2 ,
0

which reduces to

or

A- KIT0 = K2.

Setting Eqs. (111-46) and (111-49) equal to each other, we obtain

- K ~ T L = fi- KIT0

or

K2 can then be obtain by substituting into Eq. (111-46):

(111-47)

(111-48)

(111-49)

(111-50)

(111-51)

(111-52)

38

or

Substituting both of these values into Eq. (111-44) we obtain

z -

2 $e-’ldz = (T - TL)
0

5%

T = TL + (To - TL) (L) / eUZ2dz .
0

fi

(111-53)

(111-54)

in this equation is a form of the PROBABILITY INTEGRAL, also

cilled the ERROR FUNCTION. This term is not integrable in terms of simple polynomials,

but it can be “solved” by defining

n -
er f (a) = -/e-”’dz, 2

0
fi

where erf (a) can be determined as in the following table.

a
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

erf (4
0.0000
0.0564
0.1125
0.1680
0.2227
0.2763
0.3286
0.3794
0.4283
0.4755
0.5205
0.5633
0.6039
0.6420
0.6778
0.7112
0.7421

a
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

er f (4
0.7969
0.8427
0.8801
0.9103
0.9340
0.9523
0.9661
0.9764
0.9838
0.9891
0.9928
0.9953
0.9970
0.9981
0.9987
0.9994
0.9996

39

Our final solution to the heat-flow equation is then

(a - T = TL + (To - T L) erf (111-55)

This equation can be used to check the accuracy of our numerical results. It represents

the infinite rod case in which the temperature wave is not affected by the conditions at

the right end of the rod. At early time steps, the temperatures in our finite-rod simulation

should approximate those generated by this equation. Solutions at late time steps, as we

saw in Chapter 11, should approach a straight line. By examining the results generated

by our code in both these circumstances, we can verify the validity of our finite-difference

calculations.

40

IV. LAGRANGIAN FLUID DYNAMICS

A. Fluid Flow and Lagrangian Methods

Up to this point our finitedifference codes have dealt strictly with the equation of heat

transfer [Eq. (11-19)], but heat flow is only one of many phenomena that can be modeled

using the finitedifference method. In the following several chapters, we will be looking

at another physical phenomenon that can be simulated in this manner: the motion of

FLUIDS.

For our purposes, we will define a fluid as anything that is infinitely deformable or

malleable. This means that, while a Auid may resist moving from one shape to another,

it resists the same amount in all directions and in all shapes. Fluids can be either

COMPRESSIBLE or INCOMPRESSIBLE. An incompressible fluid is one that does not

change its density much when pressure is applied to it, meaning that the fluid is moving

at a velocity much less than its sound speed. A compressible fluid is one that undergoes a

large change in its density as pressure is applied to it, meaning that the fluid is moving at

a speed that is comparable to its sound speed. We will be dealing with compressible fluids

in this chapter.

Our simulation will be of a system that can be reduced to one dimension: a piston

moving in a long cylinder that is filled with gas. The compression of gas in this manner

can by dealt with in one of two ways: through LAGFUNGIAN or EULERTAN methods.

In an Eulerian code, zones remain fixed in space throughout the simulation. Fluids

move in and out of the zone at various rates, causing the mass contained in a particulm

zone to change as the simulation progresses. All physical quantities are fluxed between

cells, but the position of the cells at all time steps remains the same. We will examine this

method in Chapter V.

Another method for simulating this situation is the Lagrangian technique. In a

Lagrangian code the positions of zones vary between each time step. As fluids are

compressed and decompressed, the zones move accordingly, maintaining an equal mass

41

throughout the simulation. In a Lagrangian calculation, the energy, momentum, and

position of a given zone vary from time step to time step; only the mass contained by the

zone is held fixed. The Lagrangian technique is the one that is used in this chapter.

B. Description of Equations Used in Lagrangian Fluid Flow

In order to derive the equations that are used in a one-dimensional Lagrangian code,

we must first define a group of variables and coordinates similar to those used in our f is t

two simulations. We again have a one-dimensional system of zones, each zone representing

a certain section of the system being simulated. The system appears as in Fig. 11-3, with

a series of j true zones and ghost zones appearing at 0 and 3 + 1

0 1 2 j-1 j j + l :+i

Figure IV-I

The variables that will be applied to this system, however, are quite different from

those of the heat-transfer problem. In the fluid-flow case there is no longer a single array

of temperatures, but instead a group of arrays that represent position, pressure, velocity,

density, internal energy, and viscous pressure. The definition of these variables over a zone

j is shown in Fig. IV-2.

In this figure:
zj+1/2 = position of cell wall to the right of zone j

ujS1/2 G velocity at cell wall to the right of zone j

pj pressure of zone j

Ij = internal energy per unit mass of zone j

qj zs viscous pressure of zone j

p density of zone j

42

Figure IV-2

Note that u and x are located at the walls of the cells while the rest of the variables are

located at the centers. These positions will be important in determining the relationship

among these various quantities.

With our variables defined as in Fig. IV-2, the equations that relate them to one

another can be derived. Consider the relationship between x and u: x is the array of wall

positions and u is the array of the time rate of change of those wall positions, i.e., velocity.

From these definitions, we see that

Finite-differencing this equation gives us

= u . dX
at
-

n+l
x3.+l/2 - x7+1/2

dt = u7+1/2 7

which can be rewritten as an equation for position in terms of velocity:

(IV-1)

(IV-2)

(IV-3)

This is the first important equation of our Lagrangian fluid flow code.

The next equation follows from Newton’s second law of motion, (Force = Mass x

Acceleration), and the definition of pressure, (pressure = e). In our code we define a

43

momentum

Figure IV-3

momentum cell whose center lies at the boundary between two normal cells and define F'

and F'+l as the force at the right and the left of the j momentum cell. A momentum cell

is depicted in Fig. IV-3.

By the definition of pressure, Fj and Fj+l are rewritten in terms of variables defined

in Fig. IV-2:

(IV-4)

(IV-5)

where A is the surface area of a cell wall. Note that here we use the sum of the physical

pressure and the viscous pressure, an additional pressure that is necessary to achieve

numerical stability. The viscous pressure will be discussed in more detail in section C.

Using Newton's second law and noting that acceleration is the time rate of change of

velocity, we obtain

(IV-6)

where Fj+1/2 is equal to the net force at the cell wall j + 1/2. In the case where there are

no outside forces such as gravity in the x-direction, the net force at j + 1/2 is equal to the

44

force pushing the momentum cell from the left (Fj) minus the force by which it pushes the

next momentum cell on the right (Fj+l):

Combining Eq. (IV-6) and Eq. (IV-7) g’ ives us

3+1/2 - Ujn+l/2 Fj - Fj+l = m

or, by substituting for Fj and Fj+l,

(IV-7)

(IV-8)

(IV-9)

Defining the quantity M as 2 and solving for u;::~~, we are left with the expression

n+l - dt
?+l/2 - u7+1/2 + M (P? + qy - pj”+l - Qjn+l) (IV-10)

which gives change in u in terms of variables used in Fig. IV-2.

An expression for p can be obtained by again using our definition of M . Because

density is equal to M divided by the width of a zone, it follows that

A4

3+1/2 3-1/2
pj” =

X? - xn 7 (IV- 1 1)

which is the Lagrangian density equation.

An expression for I , the internal energy per unit mass of a cell, can be derived by

appealing to the definition of internal energy. I can be defined as the difference between

the total energy per unit mass and the kinetic energy per unit mass contained in a cell,

which is the same as the heat energy per unit mass. We can therefore use the first law of

thermodynamics,

AI = AE = Q - pAV , (IV- 12)

where AE is the change in heat energy, Q is the heat received from both conduction from

an outside source (which will not be important in this simulation) and dissipation of mean

flow kinetic energy, p is the pressure, and AV is the change in volume.

45

We now make use of the variable q, which we called the viscous pressure earlier in

this chapter. One way of thinking of this pressure is as -&/AV, or the increase in heat

energy over the compressive (or negative) change in volume. Using q, Eq. (IV-12) can be

written as

AI = - (q + p) A V . (IV-13)

Because the total internal energy is equal to m x I , this equation can be rewritten in the

following differential form:

In finite-difference form, Eq. (IV-14) becomes

(IV-14)

(IV- 15)

dX,+l 2 Using our definition of M as 2 and uj+l/2 as +, we solve for IT+' and obtain the

Lagrangian internal energy equation in finitedifference form:

I?+l = I; + - dt (4; + p y) (u7-1/2 - u3"+1/2) . (IV-16)
3 M

To obtain an equation for pressure (p) , we employ the ideal gas law, namely

p V = nRT , (IV- 17)

where p is the pressure, V is volume, n the number of moles, T the temperature, and R is

the universal gas constant. In SI units R = 8.3145 J/"K mol

In an ideal gas it can be shown that when Cp and C, are the molar heat capacities at

constant pressure and constant volume,

Cp - C, = R .

Combining this equation with Eq. (IV-17) and solving for p gives

46

(IV-18)

(IV-19)

which can be rewritten as

Because Cv is the molar specific heat and I is the internal energy per unit mass,

nCvT = mI .

By use of this equation, Eq. (IV-20) becomes

(IV-20)

(IV-21)

(IV-22)

We now define a constant y such that

This variable is called the POLYTROPIC GAS CONSTANT. This constant is always

greater than one and represents the ratio of specific heats and is a property of the gas

being simulated. Some typical values of y are

air, y = 1.4

helium, y = 1.66

y and p are used in Eq. (IV-22) to obtain the Lagrangian finitedifference equation for

pressure:

p j n - - (y - 1)pYIY . (IV-23)

This equation, also known as the POLYTROPIC EQUATION OF STATE, is used to

calculate values of p at each time step.

With pressure defined, let us take a closer look at q, called the viscous pressure. This

variable accounts for loss of kinetic energy in addition to what is used to compress the

47
1

gas. It serves as a means by which kinetic energy is dissipated in irreversible processes in

the fluid such as the creation of heat through friction. The equation for artificial viscous

pressure appears in the following form:

if positive

or if negative qy = 0 , (IV-24)

where qo is a constant between 0.1 and 0.25, and c is a characteristic velocity of the system.

This equation will not be derived in this work, but it is important to understand why

it appears in this form. The irreversible processes that are modeled through the use of the q

equation occur when there is a rapid change in the volume occupied by a gas in a system. In

our system this change occurs when there is a large differential between the velocities at the

left and right of a given cell. Hence we make q proportional to uy-1,2 - u : + ~ / ~ , indicating

a large amount of kinetic energy dissipated when there is a large velocity differential and a

small amount dissipated when there is a lesser difference in velocities. Because dissipated

kinetic energy is never returned to the system, this term is said to have a value of zero

when its computed value is negative.

In order to be dimensionally correct ujR-112 - ujn+112 is multiplied by the density of

the zone and by c, which is called the characteristic velocity. As c’s purpose is simply to

make our equation dimensionally correct, we have some leeway in choosing this velocity.

Typically it is chosen in one of three ways. The simplest method is to define c as equal to

the value of some other major velocity in the simulation. In our simulation this would be

the velocity of the piston that compresses the gas in the cylinder. Another way that this

velocity can be defined is by using the sound speed of the fluid in question. Namely

.=E, (IV-25)

which can be rewritten using our equation for pressure as

c = &y(y - q r .
48

(IV-26)

The third way in which c can be determined is by combining these two approaches by

adding the sound speed to a prevalent velocity in the problem. In this case

c = piston speed + ~ T (T - 1)T . (IV-27)

This third method is the one used in the model presented in this work.

In this section transport equations for position, velocity, density, internal energy,

pressure, and viscous pressure were derived-all the equations necessary to construct a one-

dimensional compressible fluid-flow simulation. The equations of fluid flow, particularly

those of density (or continuity), internal energy, and velocity (or momentum), are often

called the NAVIER-STOKES EQUATIONS. This is a general term that can be used

to represent any set of fluid-flow equations in 1, 2, or 3 dimensions. Having derived

these equations, we are ready to move our discussion to the construction of the computer

code itself; but before we take this step, let us first take a closer look at the artificial

viscous pressure. Its relationship with the diffusion equation will help us derive a stability

requirement that will be important in this simulation.

C. Viscous Pressure and Diffusion

Let us examine the effect of q on the momentum equation [Eq. (IV-lo)]. Substituting

our definition of q [Eq. (IV-24)] into the momentum equation, while dropping the p's and

the subscripts on p, gives us

which can be rewritten

This equation is in the form of a diffusion equation [Eq. (III-18)] where

(JY-29)

(IV-30)

We can use our definition of p

49

m M p = - - - -
A d x dx ’

to rewrite Eq. (IV-30) as

Using the diffusional stability condition on a [Eq. (111-6)],

we find that

(IV-31)

(IV-32)

(111-6)

(IV-33) q o c d t 1
d x 2 < - .

This important stability requirement arises from the parallelism between the effect

of q on the momentum equation and the equation of heat diffusion. It is the first of two

major stability conditions that are found in this code.

The second condition, the COURANT STABILITY CONDITION, is a stability

condition that occurs as a result of a numerical instability that will be discussed in

Chapter VI. Its presence in a Lagrangian simulation can be explained by using a simple

example.

Consider the Fig. IV-4, where the fluid at the left wall of a zone of length d x is moving

to the right with velocity v, while the fluid at the right wall is stationary.

t dx

Figure IV-4

In this case, we see that for a given time step (d t) , the left wall will move toward

the right wall a distance v dt . In order for our Lagrangian simulation to remain valid, the

50

left wall cannot be allowed to move past the right wall. Mathematically the system must

satisfy the following equation:

v d t < d x .

Because dx is always positive, this equation can also be written as

d t
dx v - < l .

(IV-34)

(IV-35)

Since cross-overs can also occur when a right wall moves leftward past a left wall, our final

stability condition is
dt
dx Ivl - < 1 . (IV-36)

In our code, v is equal to the maximum velocity in the system IuI + c. Equation (IV-36)

is the Courant stability condition. It will be discussed in greater detail later on in this

work. In this chapter, we need only note its restrictions when we represent our system of

equations computationally.

D. Computational Lagrangian Fluid Flow

Using the equations derived in Section B, we can begin writing our one-dimensional

Lagrangian compressible fluid-flow code. As was true in the heat code, we must define our

variables in FORTRAN terms before we discuss their use in the code itself. Our variable

names appear in code form as follows: p j = p(j), qj = q(j), Ij sie(j), pj E rho(j),

uj+i/2 E x(j-1). Note that x and u,

while still defined at j + 1/2 and j - 1/2, are written as x(j), u(j), x(j-1), and u(j-1). For

both of these variables an array index of j indicates a value at position j + 1/2, the wall

directly to the right of cell j .

(j), xj+1/2 E x(j), u j - 1 / 2 u(j-1), and xj-112

Our program is structured similarly to the heat flow problem illustrated in Fig. 11-5.

The code exists in five main sections: an initialization routine, a section for time checks

and incrementation of counters, the definition of boundary conditions, the updating of

variable values, and an output procedure.

51

First, let us examine our initialization procedure, which defines all the initial values

necessary for the problem. Just as in the last simulation, this procedure is used to initialize

time counters and define the length of the system being simulated, but this procedure must

also set values which were not present in our last case.

It defines the constants:

qo

gamma

M mass/area

ul

U1'

as occurs in Eq. (IV-24)

the ratio of specific heats

the velocity at the left end of the cylinder

the velocity at the right end of the cylinder

Also initial values must be assigned to the constants:

rho0 the initial zone density

sieO

uo the initial zone velocity

the initial zone internal energy

A loop such as the one that assigned temperatures in the previous problem must be

constructed to initialize all the real elements of arrays rho as rho0, sie as sie0, and u as

u0, and to compute initial values for x, p, and q using Eqs. (IV-3), (IV-23), and (IV-24),

respectively.

After the initialization procedure, the program moves into the same sort of loop as

did the heat program: making checks, incrementing time counters, updating boundary

conditions, and updating the arrays. The time check portion of the loop is exactly the

same as in our last two codes and can be written by repeating what was discussed in

Chapter 11. The boundary conditions and array assignments are also quite similar to those

of our first program but must now be modified to deal with a group of arrays as opposed

to a single array of temperatures.

The boundary conditions must be defined for each variable that is referenced at the

j = 0 or j = jbart-1 positions. We can determine which variables are referenced in these

52

positions by referring to the equations that define our variable values: Eqs. (IV-3), (IV-IO),

(IV-ll), (IV-16), (IV-23), and (IV-24).

From Eq. (IV-ll), which appears in code form as

rho($ = - x(.i - 1)) , (IV-37)

we see that x(0) will be referenced, indicating the need for the position at the left of the

system to be prescribed in our boundary conditions. By similar analysis of Eqs. (IV-16)

and (IV-24), we see that there is also a need for values to be determined for u-l/2 and

uj+1/2, and for this reason boundary conditions must be assigned to u(0) and u(jbar),

representing u-l/2 and uj+1/2, respectively.

An examination of Eq. (IV-10) might lead the reader to believe that boundary

conditions are also required for p and q at position jbar+l. This requirement would

be true if the wall at the right of the cell were not prescribed, indicating a u(jbar) that is

determined independently of p and q. The only three variables that must be modified to

establish our boundary conditions are x(O), u(O), and u(jbar).

These variables should be assigned according to the system we wish to represent. For

the piston problem, the wall at the right is stationary, indicating that u(jbar) = ur. The

velocity at the leftmost cell wall in this problem is equal to the velocity of our simulated

piston, u(0) = ul. The position of the leftmost cell wall is equal to its position at the old

time step plus the distance that it moves to the right during the new time step, x(0) =

x(0) + dt * ul.

In our boundary conditions, we set a value of u(jbar) and not u(jbar+l). This value

may seem strange to the student, as it does not make use of a ghost zone but rather

modifies a real value in the array. It is allowed because u(jbar) itself exists at a boundary,

representing the velocity at the wall directly to the left of zone jbar. In effect, a ghost zone

is being modified in which u(jbar) defines the rightmost wall.

With the boundary conditions updated, the code then moves into the updating portion

of the program. This is an explicit procedure, which does not use the nested loop structure

53

that was employed in the previous chapter. We are once again dealing with a single loop

that assigns new array values based on the values at the previous time step. However, this

time we are not dealing with a single array of temperatures but a series of interdependent

arrays.

This change presents a problem that was not present in the previous simulation,

n-amely that of updating the values of the variables in an order such that all terms defined

at time n in an equation exist at the same time step. This problem is a more complicated

version of the one that caused us to create a Tnew array in Chapter 11. Now we are not

only concerned that the terms of a single array exist at the same time step, but that the

values of a group of arrays be updated in an order such that each variable is calculated

using values from appropriate time steps.

To understand how this order is determined, let us first list our six equations in

pseudo-code format. All variables are expressed as they would be in FORTRAN with the

exception of the superscripts which are used to remind the reader of the time step at which

each of these terms exists. In this form, Eq. (IV-3) becomes

x"+'(j) = xn(j) + un(j) dt. (IV-38)

Equation (IV-10) becomes

Equation (IV-ll), written at the new time step, is

rhon+' (j) = M (x"+l(j) - xn+l(j-l)).

Equation (IV-16) becomes

sienfl = sie"(j) + (dt/M) * (qn(j)+pn(j)) * (un(j-l) - un(j)).

Equation (IV-23) at the new time step is

p""(j) =(gamma - 1) * rhonf1 (j) * sien+'(j).

Equation (IV-24) also at the new time step is

54

(IV-39)

(IV-40)

(IV-41)

(IV-42)

if (qn+l(j) . It. 0) qn+l (j)= 0.0, (IV-43)

where cn+' is computed at cell j as in Eq. (IV-27).

The equations are placed in an order such that each variable exists at an appropriate

time step when it is used. For example, both x and u must exist at time step n when

Eq. (IV-38) is implemented, so this equation must appear before Eq. (IV-39). By similar

argument, Eq. (IV-39), which includes a p term at time n, must appear before Eq. (IV-

42), which updates p . Further examination of equations in this manner leaves us with

a final order in which these equations must be placed, namely, Eq. (IV-38), Eq. (IV-

41), Eq. (IV-39), Eq. (IV-40), Eq. (IV-42), and Eq. (IV-43), where the third and fourth

are interchangeable, as well as the fifth and sixth. The variable updating portion of the

program is a loop that implements these transport equations in an appropriate order.

I 1nitialB.C. I
7 1 t = stime

Figure IV-5

55

With these four sections completed, all that remains is to construct an output

procedure desirable to the user, and the one-dimensional Lagrangian fluid code is complete.

A graphical representation of this code appears in Figure IV-5.

E. Shocks and Shock Tubes

The following five figures are plots of the density of the fluid in the cylinder as the

piston moves in from the left. The parameters chosen for this simulation are: length

= lO.(cm), ul = 0.5(cm/s), ur = O.O(cm/s), gamma = 5/3, jbar=20, rho0 = 1.0 (g/cm3),

sieO = 0 (cm2/s2), qO= 0.3, and dt = 0.05(s). Plots appear at times of 2, 4, 6, 8, and 10

seconds respectively.

9 -

0 -

9 ! 0

a

Densities at Time 2 (s)

2 .I 5 0 7 8 1o.a

Figure IV-6

Densities at Time 4 (s)

a1 I a. D 2. I S. 0 7 .z 10.0

Figure IV-7

56

0 2.1

Densities at Time 6 (s)

9.0 7 .a 10.0

Figure IV-8

Densities at Time 8 (s)

Figure IV-9

Densities at Time 10 (s)

Figure IV-10

57

The phenomenon that we are examining in these plots is known as a SHOCK, a rapid

transition between two states that moves relative to the fluid. Weak shocks occur when

fluid is moved at low speeds, but the effects of shocks are most notable when a fluid is

moved at a velocity that is near to or greater than the sound speed of the fluid. A shock

can be visualized by using the analogy of an evenly spaced line of billiard balls.

Consider the case in which a narrow channel has a piston at one end and is filled with

evenly spaced billiard balls, as depicted in Fig. IV-11.

Figure IV-1 1

The leftmost ball is pushed to the right by the piston and begins to pile up balls in front

of it as it moves down the passage. This movement creates a regon in which billiard balls

exist at a much higher density than in the rest of the passage, because the billiard balls

that are moving are touching each other whereas the stationary ones are still evenly spread

apart. The front of this compressed region (called the shock or SHOCK FRONT) moves

forward faster than the piston itself because billiard balls are constantly piling up in front

of the piston as it moves to the right. This system is illustrated in Fig. IV-12. Note that

in this figure the transition from the compressed region to the undisturbed surroundings

is virtually instantaneous, and that the shock front is not a gradual change in density but

rather takes place over a very narrow span.

Our Lagrangian plots demonstrate this sharp contrast between compressed and

uncompressed fluid that occurs in a shock. In these plots we can also see the compressed

region expanding and the shock front moving at a velocity that is greater than that of

the piston. The velocity of the shock front can be predicted, as can other properties,

58

compressed region

shock front
(moves faster than the piston)

Figure IV-12

by appealing to the equations that describe the theory of shocks. In particular, we will

be using the equations of INFINITE STFCENGTH SHOCKS, shocks that occur when the

shock speed is large compared to the sound speed ahead.

These equations will not be derived in this work, but such derivations are available in

various textbooks and monographs, specifically in “Fluid Dynamics-A LASL Monograph”

by Francis Harlow and Anthony Amsden, LA-4700. In an infinite strength shock, these

equations are
Y + l u s = - 2 UP 3

where us is the velocity of the shock, and up is the velocity of the piston, and

(rv-45)

where ps the density behind the shock, and PO is the initial density of the fluid.

Applying these equations to the parameters used in our simulation, we predict that

the shock will move forward at a speed of 0.66 (cm/s), and produce a compressed region

of density 4 (g/cm3). These two values can be used to verify the results presented in

Figs. IV-6 through IV-10.

59

The next two graphs illustrate the effect of q0 on the accuracy of our numerical

simulations. If q0 is chosen too low, the answer becomes numerically unstable, as is

illustrated in Fig. IV-13.

0 -
0

-7 -_
9
n-

c -.-
0
a

-. Densities at Time 10 (s), q0 = 0.1
-1

Figure IV-13

If q0 is too high, on the other hand, the answer is stable but inaccurate, losing the degree

of clarity that was present in the q0 = 0.3 graphs.

Densities at Time 10 (s), q0 = 0.75

I I tr 5'. 0 7 .8 10.0

Figure IV-l'4

At even higher q0 values, the diffusional stability condition is violated, resulting in the

program being terminated by errors.

60

$&- ,- ,<--*". .I

A second problem that can be modeled using a one-dimensional Lagrangian code

is that of a SHOCK TUBE, a tube that contains two fluids, usually gases, of different

densities. Computationally, this problem is set up by setting al l velocities to zero and

creating an array that is made up of one set of zones at a density pleft; and another set

of zones at a different density pright. Because our equations assume a constant M , these

zones must be MASS MATCHED such that the mass of every zone is a constant. This

matching is done by decreasing the initial length of the denser zones relative to the initial

length of the less dense zones such that dzp is a constant.

In the example presented in this work, Pleft; is chosen to be 1 (g/cm3) while pright is

4 (g/cm3). Mass matching is achieved by multiplying the length of the left zones by 8/5

and multiplying the length of the right zones by 2/5 so that 8/5 x 1 = 8/5 = 2/5 x 4. The

resulting code appears as the following:

do 100 j = ljbar/2

rho(j) = rho0

x(j) = x(j - 1) +(8./5.) (length/float (jbar))

100 continue

do 200 j = (jbar/2)+l,jbar+l

rho(j) = rhoO"4

x(j) = x(j - 1) +(245.) * (length/float (jbar))

200 continue

For the results shown in this simulation, the following parameters are used: length =

10.0 (cm), ul = 0.0 (cm/s), UT = 0.0 (cm/s), jbar = 20, rho1 = 1.0 (g/cm3), rhor = 4.0
(g/cm3), sieO = l.O(cm 2 2 /s), qO= 0.3, gamma = 5/3, and dt = 0.05 (s). Note that sie0

is not equal to zero in this simulation; there woid be no motion of fluids in the shock

tube without some initial internal energy being present. Figures IV-15 through IV-20 are

graphs of this system at times of 0, 1, 2, 3, 4, and 5 seconds respectively.

61

Densities at Time 0 (s)

z
- - _

i
I

, I 1 1

Figure IV-15

Densities at Time 1 (s)

s
0

0, D 2 8 5 .a 7.5 la0

Figure IV-16

Densities at Time 2 (s)

Figure IV-17

62

Densities at Time 3 (s)

Figure IV-18

Densities at Time 4 (s)

CI -
-.I I I I 1

000 za 5 .O 7.5 10.0

Figure IV-19

Densities at Time 5 (s)

Figure IV-20

63

In these graphs we see three major features: a shock wave moving to the left, a

CONTACT DISCONTINUITY between the two fluids that is also moving to the left, and

a RAREFACTION WAVE that is moving to the right and bouncing off of the wall. Each

of these elements has been labeled in Fig. IV-21, below.

- -- -
Q -
c

9. -
? - -

contact discontinuity

shock front

Figure IV-21

The equations that describe the properties of each of these three features of the shock

tube problem will not be included in this work. Once again, the reader interested in these

equations should refer to LA-4700 or a similar work.

The same sort of instabilities that were present in the piston problem can also be

induced in the shock tube problem, as is illustrated by the following plots of density at a

time of 2 seconds, each generated by the same parameters as the previous graphs except

for q0, which is 0.1 in the first graph and 0.75 in the second.

64

Densities at Time 2 (s), q0 = 0.1

-
q-

P

Figure IV-22

Densities at Time 2 (s), q0 = 0.75

Figure IV-23

Again, if q0 is increased to an even higher level, the code will become numerically unstable.

In this chapter we have seen a number of simulations that can be created using the

Lagrangian equations for one-dimensional compressible fluid flow. In the following chapter,

we will solve the same sorts of problems using an Eulerian method, learning a different

technique that can be used to solve the equations of fluid motion computationally.

..

65

V. EULERIAN FLUID DYNAMICS

A. Eulerian Methods and Advective Flux

In the previous chapter we examined the use of Lagrangian methods in solving the

equations of one-dimensional compressible fluid flow. We are now going to approach the

same problem from a different perspective, using an Eulerian technique. In this method the

zone positions are held completely fixed, while all quantities are allowed to move between

zones. Cell masses are not constant in time, but instead fluid moves between cells; while

only the spatial coordinates of the zones remain constant.

This constancy of spatial coordinates is maintained by the calculation of ADVECTIVE

FLUXES, fluxes that occur as a result of the motion of fluid from one region to another.

An example of this type of flux is the transfer of heat by convection, where heat energy

is moved from one region to another by the transfer of the material that contains that

energy. The new region is heated not because the material in that region has absorbed

the energy from another region, but because a new, hotter material has been moved in to

replace the old.

This type of flux is in contrast to the NONADVECTIVE FLUXES that were present

in our Lagrangian calculations. Those fluxes occur when the quantities themselves move

from one region to another without any motion of material. An example of a nonadvective

flux is heat conduction.

While our previous simulation dealt only with nonadvective fluxes, our Eulerian one

dimensional fluid code will include both advective and nonadvective fluxes. In order to

accomplish this, we must return to our six equations that describe the interaction of the

various physical quantities and add to each a term that describes the advective fluxes that

are intrinsic to the Eulerian method.

66

B. The Equations of Eulerian Fluid Flow

In order to understand the mitnner that advective flux can be mathematically

represented, we must first take a closer look at the situation that it represents. Consider a

system such as in Fig. V-1, in which a portion of the material in one zone is being moved

into the zone that is adjacent to the right.

-
u = velocity

Figure V-1

In this picture we see that when the material in a zone is moving at a velocity u, the

material contained in a length u d t will be moved into the adjacent cell. Because each zone

hai an area A, the volume moved from one cell to another is A u dt.

This transfer of volume can be multiplied by p, the mass per unit volume, to obtain

the following equation for total mass crossing the cell boundary in a given time step:

Total Mass Crossing Boundary in a Time Step (dt) = A p u dt (V-1)

This equation can be used to find the mass flux, the total mass crossing per unit time per

unit area:
Apudt

dt A = p u MassFlwc =

Equation (V-2) is a statement of the advective mass flux between two cells. It illustrates

a much more general principle that can be shown by replacing p by a value Q, the density

of any quantity that is being advected. In this general case

c.

_ -

Advective Flux = Qu . (V-3)

67

The density of each of the various physical variables is computed by simply dividing

the desired quantity by the volume of a cell. Consider the case of momentum, for example.

As was stated in the previous chapter, momentum is m a s times velocity:

m u = momentum.

Dividing both sides by the volume of a cell, we obtain

momentum - - mu
volume volume

Because m/volume is p and momentum/volume is the momentum density, this equation

can be rewritten:

and

pu = momentum density.

By a similar process, we find that

p l ' = internal energy density ,

P U2 - = kinetic energy density .
2

Note that I in Eq. (V-7) is internal energy per unit mass.

Substituting these three density terms into Eq. (V-3), we obtain the following

equations of advective flux:

Advective flux of mass = pu

Advective flux of momentum = pu2

Advective flux of internal-energy = p I u

Advective flux of kinetic energy = - PU2
2

(V-9)

(V-10)

(V-11)

(V-12)

We will use these expressions in deriving the equations of Eulerian fluid flow

68

We begin with the expression for density, which was described in our Lagrangian

calculations as

(Iv-11)
M py =

xy+1/2 - xy-1/2 -
This expression needs to be modSed to reflect the fact that mass is no longer a constant

and that distance between cell walls is no longer a variable. To m o w this equation, we

first substitute dx, the fixed distance between the cell walls, for xjn+l/2 - n

M
dx

p = - * (V-13)

We must now derive an expression for changes in M , the mass of a cell divided by the

area. This derivation is similar to that of the expression for heat in Chapter 11. &om mass

conservation,

massy+' - massy = amount in - amount out. (V- 14)

Because amount in and amount out are simply flux x area x time step, and flux has been

defined by Eq. (V-Z), numerical expressions for both these terms can be calculated:

By substituting these two values into Eq. (V-14) the change in mass, massy+' - massy,

can be expressed as follows:

A mass = (p ~) j - ~ / 2 A dt - (~ ' L L) ~ + ~ / ~ A dt . (V-17)

Using our definition of M as mass divided by area and factoring out like terms, we obtain

an equation for change in M :

Combining this equation with Eq. (V-13), we fhd the following:

(V-18)

(V-19)

69

Because the new density is equal to the old density plus the change in density, p + Ap, we

are left with a final equation for the updating of densities that is made up of two parts:

an expression for the density at the old time step and an expression for the change due to

advective flux:

(V-20)

This analysis leaves us with an equation that expresses density at the new time step, but

also presents us with a problem. Equation (V-20) makes use of the advected pj-1/2 and

pjtlj2 densities expressed at the left and right wall of cell j . These quantities cannot be

referenced directly but instead must be computed using one of two methods: CENTERED

or DONOR CELL.

Centered expressions for advected quantities are computed by averaging the values at

the cell centers to the right and left of the wall across which fluid is being advected. In

our case, centering would lead to an expression for density in the form of Eq. (V-15):

This value is not acceptable for pj-1/2, however, because it

UNSTABLE, meaning unstable no matter how small we choose

for this instability will be discussed in Chapter VI.

(V-21)

is UNCONDITIONALLY

our time step. The reason

A better method is the donor-cell technique, which uses the upstream value as the

value at the advection cell wall. In this technique, the value of a quantity at the cell wall

is equal to the value at the left cell center if the flow is from the left or equal to the value

at the right cell center if the flow is from the right. This choice of values is mathematically

or

(~ ~) j - 1 / 2 = pjuj-1/2 if uj-1/2 < 0

and is illustrated visually in Fig. V-2.

70

(V-22)

j - 1 I J
j - 112

Figure V-2

The donor technique should be employed wherever a quantity is being advected across a

cell wall, as is the case with internal energy.

The Eulerian internal energy equation can be calculated beginning with the Lagran-

gian equation:

This transport equation for I is made up of

(U h 2 - ?-13n+1/2) (N-16)

two major terms: the internal energy

at the last time step (IT) and the change because of nonadvective flux $$ (q; + p y)

(U Y - ~ , ~ - u ; + ~ / ~) . To write this equation in an Eulerian manner, we must add a third

term to represent the advective flux. Before this term is added, however, this equation

must first be modified. Multiplying by M , we obtain

(MI);" = (MI): + dt(p + q)y (u7-1/2 - u:+'/~) . (V-23)

This equation represents the total change in M I due to the nonadvective pressure terms.

We saw in Eq. (V-20) that the t rwpor t equation for a miable whose value is changed

only by advective flux appeas in the form

(V-24)

where Q is any variable property of the cells and V is the volume of a single zone. Using

this equation to express change due to advective flux in terms of energy density, we obtain

(V-25)

71

Combining this equation with Eq. (V-23) gives us an expression for change in internal

energy that accounts for both advective and nonadvective fluxes:

Because zones are stationary in an Eulerian simulation, M = p dx. Therefore, this equation

can be rewritten as

This equation is computed using the donor-cell technique for the puI term:

(p u I) j - 1 / 2 = Uj- l /2 (P I) j - l if uj-1/2 > 0

or (V-28)

(PI)j-1/2 = uj-l/2(PI)j if +1/2 < 0 -
By a process similar to the derivation of Eq. (V-26), Eq. (IV-10) is rewritten as

(V-29) (Mu)jn=1;2 = (Mu)?+-1/2 - dt ((P + d:+i - (p + q)y) -

This equation is combined with an advective equation in the form of Eq. (V-25), namely

(V-30)

to obtain an equation that accounts for both the advective and nonadvective fluxes that

affect momentum:

(V-31)

Once again referring to our equation for M given ;fixed distance between cells (M = p dz)

we obtain

(V-32)

72

In this equation, values for u at the cell centers must be computed using the donor-cell

technique. These appear in the form

or

where U j , ~ j - 1 1 2 , and ~ j + l / 2 are computed as averages of the values half a cell to the left

and half a cell to the right of the point at which these quantities are defbed:

(V-34)

(V-35)

(V-36)

The student may pose the question of why these averages are used in donor-cell calculations,

as they seem to indicate a centered approach that is unconditionally unstable. To explain

why these averages are employed, we return to our momentum cell diagram, noting where

these various variables are located. In the following figure, the letters in bold indicate

quantities at positions where their values are not specified.

momentum cell

I 1

Figure V-3

73

The terms that employ the donor cell technique are made up of two portions, the

donoring velocity and the quantity that is donored. In our original case of density flux,

these quantities are uj-1/2 and pj-1/2, respectively. The donoring velocity is always taken

at the position at which the flux is taking place, whereas the donored quantity is taken at

the center of the cell to the upstream side of the cell wall at which a flux is taking place.

For density flux and internal energy flux, all of these values can be taken from positions at

which these quantities were directly defined: density and internal energy at the cell centers

and velocity at the cell walls. For momentum flux, however, the situation is different.

From Fig. V-3, we see that the donoring velocity at the wall of the momentum cell is

uj) whereas the donored quantities at the center of the momentum cell exist at positions

j - 1/2 or j + 1/2. This configuration forces us to use values that are not directly present

in our arrays. These values: u j , , 0 j - ~ / 2 , and pj+1/2, are obtained by averaging as in

Eqs. (V-34) through (V-36).

We have now derived Eulerian equations for density (p) , internal energy (I) , and

momentum (mass x u). Values for pressure and viscous pressure (p and q) are determined

directly from the values of the other three quantities at each new time step. Thus, the

equations for p and q from Chapter IV can be used in our Eulerian simulation. We have

completed all the derivation necessary to obtain a set of equations for the simulation of

one-dimensional fluid flow in an Eulerian manner and can now begin to implement these

equations on the computer. Before we begin this implementation, however, let us first take

a look at how our equations appear in partial-differential form and make some observations

as to the way that Lagrangian and Eulerian calculations are related.

C. The Partial-Differential Equations of Fluid Flow

Once again, we are going to examine the partial-differential equations that relate

to our finite-difference equations. As was the case when we previously examined these

equations, this section is not necessary in the writing of our finitedifference code. It is

provided only as an additional method of looking at this system.

74

By a process similar to that used in Section C of Chapter 2, we can rewrite

our equations of fluid flow by taking the limits as dx and dt approach zero and

generating equations in partial-differential form. In this form Eqs. (V-20) (mass), (V-27)

(momentum), and (V-31) (heat energy) appear as follows:

(V-37)

(V-38)

(V-39)

These equations represent the Eulerian form of the transport equations for mass,

momentum, and heat energy respectively. They are another form of the Navier-Stokes

Equations.

We are going to take a look at these Eulerian equations and relate them to the

equations used in the Lagrangian code, trying to gain a better understanding of why

these two seemingly dissimilar methods yield computationally similar results.

We will begin with the mass equation, Eq. (V-37). By the chain rule, the second term

can be expanded to obtain
ap dp du
- + u - + p - = o . at ax ax

(V-40)

We now employ the mathematical identity for the total differential of a function of

two variables, f (x, t):
af af df = -dt + -dx . at dX

(V-41)

This equation states that for arbitrarily slight chkges in t and z (denoted by dt and dz)

the function f changes by an amount df, as given by the formula. Dividing by dt gives us

df df df dx
dt at dx dt +--. -=- (V-42)

75

In the special case when $ follows the motion of a fluid, as in a Lagrangian calculation,
dx then = u and

df - d f 8 - - - +u- .
d t dt dx

(V-43)

This is an expression for the rate of change of f along the motion of a fluid, also known

as the LAGMNGIAN DEWATIVE. It will be denoted in this work as $ as opposed

to g. Elsewhere in the literature, the notation is often used to further emphasize

the difference between the partial and Lagrangian derivatives. The meaning, however, is

equivalent.

Using the Lagrangian derivative to rewrite Eq. (V-40), we obtain

d p d u
d t dx - + p - = o .

This equation is the Lagrangian partial-differential equation for fluid flow; its finite-

difference approximation is equivalent Eq. (W-11). To show this equivalence, we begin

with Eq. (V-44) and divide by p2 to obtain

= O + -- p2 dt p d x
1 dp i a u --

or

Finite differencing the second term gives us

(V-45)

(V-46)

(V-47)

Note that in this equation d x is no longer part of a partial derivative but a finite distance

between zones.

From Eq. (V-13) we have M = p d x , and from Eq. (IV-1) we have u = d x / d t , so we

can write this equation as

76

(V-48)

In this equation, all d t terms are Lagrangian derivatives and can thus be treated in the

same manner. We can therefore integrate this equation with respect to d t to obtain

1=(X j + l / 2 M - X j - 1 / 2)

P

This equation is equivalent to our Lagrangian density equation,

(V-49)

(Iv-11)

We see then, through the use of partial-differential equations, that the Eulerian and the

Lagrangian mass equations are equivalent in the properties that they represent.

This equivalence is also true for the momentum equation, which appears in Eulerian

form as Eq. (V-38). This equation can be expanded to obtain

du dp du dpu dP p- +u- +p- +fu- = -- at at ax ax dx ’ (V-50)

where P s i d e s the total pressure (P = p + a).
Returning to the mass equation (V-37), we see that the sum of the second and fourth

terms of Eq. (V-50) is equal to zero; this gives us

dU dU dP p-+pu-=--
at d X d X

or

Employing the Lagrangian derivative, we obtain

du dP
pelt=--- d X

(V-51)

(V-52)

(V-53)

This equation is the Lagrangian partial-differential-equation for momentum. Dividing both

sides by p and finitedifferencing it gives us

(V-54)

77

which, with a shift of indices, is equal to Eq. (IV-10):

n+l - d t
U j + l / 2 - u7+1/2 + (Pj” + qy - Pjn+l - qy+1) -

For internal energy, the process is similar. Eq. (IV-39) is expanded
dI dp ar dpu Pdu

p- + I - + pu- +I- = -- , dt d t ax ax d X
the second and fourth terms are dropped using the mass equation

p (g + u E) = P - , dU
d X

(IV-10)

(V-55)

(V-56)

and finally the Lagrangian derivative is used to get the Lagrangian equation for change in

internal energy:

(V-57)
d I dU p- = -p- .
dx d X

Through finite differencing, this equation can be shown to be a partial-differential

representation of Eq. (IV-16):
d t 1“+l 3 = I; + - M (qy +py) (uy-1/2 - u + 1 / 2) .

So we see that for an Eulerian simulation, our equations appear as

- 0 7 -+-- 8P dPU
dt ax

dpu dpu2 dP - +-+-=0 ,
dt ax ax

- 0 ;
dpI dpuI Pdu
dt d X +-- d X +- -

whereas, in a Lagrangian simulation, our equations are
d p du
dt dx - +p- = 0 ,

du dP
d t dx

p - + - = o ,

(IV-16)

(V-37)

(V-58)

(V-59)

(V-60)

dI d u
d t d X p- + P- = 0 . (V-61)

78

These partial-merentia1 equations provide another way of looking at our onedimensional

fluid-flow equations. They help to explain the Lagrangian and Eulerian finitedifference

equations and demonstrate that, although these are seemingly different, their underlying

principles are the same.

D. Computational Implementation of Equations

The structure of our Eulerian onedimensional fluid code is similar to that of the

Lagrangian code: it contains the same five sections, its variable declarations are almost

the same, and the output procedure is of the same type.

There are, however, some major differences between these two codes. These diflerences

are found in the initialization procedure, in the boundary conditions, and in the equations

that are used to update the variable values.

The order in which our variables are given new values is again rho, u, I, p, and q; but

rho, u, and I must now be calculated using quantities calculated before the program enters

the loop that assigns new values to these arrays. This loop must generate values for rho,

u, and I; but the transport equations that were derived in Section B are written in t e rm

of p j , (pu)j+l/z, and (p1) j . We have to obtain array values for the following quantities

before calculating the other physical variables:

rhon(j)-py+'

rhoun(j)-P;:$~
rhoin(j)-pq+' .

Each of these arrays is calculated using the Eulerian equations of transport. The

calculations are done for all array values before any updating of rho, u, I, p, or q is

done.

Density is computed by simply setting the rho array equal to the rhon array:

rho(j) = rhon(j) .
Velocity, u is computed by dividing the density times velocity array by the density array

at position j+1/2:

79

u(j) = rhou(j)/(.5 * (rhon(j) + rhon(j+l))) .
Internal energy is computed by dividing the internal energy times density array by the

density array:

sie(j) = rhoin(j)/rhon(j)

The p and q equations remain unchanged fcom the Lagrangian case. This situation leaves

us with a loop that assigns values for rho, u, I, p, and q that appears in the following form:

do 300 j =ljbar

rho(j) = rhoun(j)

u(j) = rhoun(j)/(.5*(rhon(j)+rhon(j+l))

sie(j) = rhoin(j) / rhon(j)

p(j) = (gamma-1) * rho(j) * sie(j)

asie = gamma * (gamma-1) * abs(sie(j))

c = abs(ul) + sqrt(asie)

q(j) = q0 * rho(j) * c * (u(j-1)-u(j))

if (q(j).lt.(O.O)) q(j) = 0.0

300 continue

This loop is preceeded by another loop that computes rhon, rhoun, and rhoin arrays

using the Eulerian equations for the transport of mass, energy, and momentum:

(V-20) dt
PY+l = Pj” + - dx ((PU)j - l /2 - (PU)j+1/2)

Each of these equations requires the use of the donor-cell technique, meaning that donor-

cell values must be computed for

~ j - 1 / 2 and ~ j + 1 / 2

(PU I) j -1 /2 and (P u I) j + l / 2

(Pu2>j and (pu2)j+l -
80

The problem of having to write our equations in a manner that allows the computation of

donor-cell for each of these terms can be approached in at least two ways: with a series of

if/then checks or with a double look-up technique.

The first of these methods involves writing a separate if/then check for each of these six

terms. This approach uses six different variables, each with values determined according

to the direction of the motion of the fluid, with six separate checks being made for the

direction of fluid motion at every loop iteration. This method is viable, but it triples the

number of if/then checks, calls for the use of additional scalar variables, and unnecessarily

complicates our code.

A much easier technique is to carry out all the flow direction checks before any of the

arrays are computed. To do this, we create two arrays of variables: idnr and jdnr. In a

loop at the beginning of the variable updating portion of the program, all the elements in

these arrays are assigned values of either 0, if the flow is from the left to the right, or 1, if

the flow is from the right to the left. idnr represents the motion of fluid at the cell walls

(j +1/2), while jdnr represents the flow of the fluid at the cell centers (j). The loop in

which they are computed is the following:

do 100 j =l,jbar

idnr(j) = 0

jdnr(j) = O

if (u(j).lt.O.O) idnr(j)=l

if ((u(j-1)+u(j)).lt.O.O) jdnr(j)=I

100 continue c-

We can “e these integer arrays to determine the positions at which the donor-cell terms

are computed. By indexing our variables with j plus an appropriate value of idnr or jdnr,

we can rewrite the donor cell terms in the following manner:

81

(p u)j- 1/2-rho(j-l+idnr(j-l)) * u(j-1)

(~u)j+1/2--rho(j+idnr(j)) * u(j)

(p u I)j-1/2-rho(j-l+idnr(j-l)) * u(j-1) * sie(j-l+idnr(j-1))

(p u I)j+l/2--rho(j+idnr(j)) * u(j) * sie(j+idnr(j))

(p u2)j--(u(j-1)+u(j)) * .5 * u(j-l+jdnr(j-1))

(rho(j-l+jdnr(j-l))+rho(j+jdnr(j))) * .5

(pu2)j+l-(u(j)+u(j+l)) * .5 * u(j+jdm(j)) *
(rho(j+jdnr(j))+rho(j+l+jdnr(j+l))) * .5

The terms on the right of this table are simply computational translations of Eqs. (V-22),

(V-28), and (V-33), using a double look-up technique rather than carrying out an if/then

statement for each of the equations.

We can compute rhon(j), rhoun(j), and rhoin(j) by constructing a loop that follows

the computation of the donor-cell arrays but comes before the computation of the rho-u-sie

loop. This loop should appear similar to the following, with the values from the above

table being used whenever one of the bold (donor-cell) terms is used.

do 200 j = 1,jbar

c.. density

rhon(j) = rho(j) + ((dt/dx) * ((rho U)j-1/2 -(rhou)j+lp))

c.. internal energy

rhoin(j) = (rho(j) * sie(j)) - ((dt/dx) * ((rho u sie)j+l/a-

&(rho u sie)j-1/2 + (p(j)+s(j)) * (u(j)-u(j-1))))

c.. momentum

rhoun(j) = (((rho(j)+rho(j+l)) * .5) * u(j)) - ((dt/dx) *
&((rho u2)j+1 - (rho u2>j> * (p(j+l>+s(j+1>-p(j>-q(j)))

200 continue

82

To summarize, the variable updating portion of our program consists of first a donor-cell

loop; then a loop to compute the mass, momentum, and internal energy densities; and

finally a loop that changes the values of the rho, sie, u, p, and q arrays. The return

designations of these loops have been numbered in this order.

Returning to the issue of the boundary conditions: An analysis of our equations

indicates a need for specified values of rho(0) and sie(0) in addition to u(0) and u(jbar) as

in the Lagrangian case. Positions need no longer be updated because they remain k e d

throughout the simulation; instead, the conditions must be added that sie at position 0 is

equal to a variable siel, and rho at position 0 is equal to a variable rhol. These boundary

conditions are of a different nature than those in the heat-transfer problem. There, a

constant temperature was maintained at the wall by the recalculation of the value of T(0)

at every time step. The equation was

(11-21)

This averaging is not necessary in the present code, because the value used at the wall is

computed using the donor-cell technique. If flow is fiom the left to the right, as is the case

with our piston, the values assigned to sie and rho at position j = 0 will effectively exist

at the rightmost wall, j = 1/2. We are now faced with the question of what values should

be assigned to the variables at these positions.

In the Eulerian case, we do not represent the piston itself but rather a shock that

is created by the motion of a piston somewhere upstream. We can therefore appeal to

the equations for the fluid dynamics of shocks to determine our boundary conditions at

the left: p = spa, and I = $PO. By substituting our “gamma” and “ul” for the y’s

and u’s in these equations, we can generate quantities for rhol and siel that will help

to maintain a shock wave. Finally, these two variables are added to the initialization

procedure, completing our Eulerian code. A graphical representation of this code appears

in Figure V-4.

83

I start I

Boundary Conditions +)I

Figure V-4

E. Eulerian Results and Comparison of Eulerian and Lagrangian Simulations

The following five figures are plots of the density of the fluid in the cylinder as the

shock moves in from the left. The parameters chosen for this simulation are: length = 10.0

(cm), u l= 0.5 (cm/s), UT = 0.0 (cm/s), jbar=20, rho0 = 1.0 (g/cm3), sieO = 0 (cm2/s2), q0

= 0.25, gamma = 5/3, and dt = 0.05 (s). Note that these parameters are precisely those

used to run the Lagrangian piston problem, with the exception of q0, which is lowered

from 0.3 to 0.25 for the Eulerian simulation. Plots appear at times of 2, 4, 6, 8, and 10

seconds respectively.

84

Densities at Time 2 (s)

4 -.

Figure V-5

I I I I

Densities at Time 4 (s)

Figure V-6

- Densities at Time 6 (s)

Figure V-7

85

P
V

D. D l g C O 7. F 10.0

-
0 -
0
c-

- --

Figure V-8

Figure V-9

Note that the Eulerian shock is not as sharp as the Lagrangian shock, even at this

lower value of q0. This difference is due to an artificial diffusion that results as an effect

of the donor-cell technique. This effect will be discussed in Chapter VI.

Once again applying the equations of shocks [Eqs. (IV-44) and (N-45)] to the

parameters used in our simulation, we predict that our shock will move forward at a

speed of 0.66 (cm/s) and produce a compressed region with a density of 4 (g/m2s) . These

values verify the results presented in Figs. V-5 through V-9.

The next set of plots demonstrate the results that can be obtained by applying an

Eulerian code to the shock tube problem. The following parameters are used: length =

10. (cm), ul = 0.0 (cm/s), ur = 0.0 (cm/s), jbar=20, rho1 = 1.0 (g/cm3), rhor = 4.0

86

(g/cm3), sieO = 1.0 (m 2 2 /s), qO= 0.3 and dt = 0.025 (s). Our simulation is set up such

that 0.8 of the tube is filled with the less dense fluid and 0.2 is filled with the denser

fluid. This set up is necessary to parallel the situation simulated in Chapter IV. Unlike

the Lagrangian simulation, however, no mass matching is necessary in the Eulerian case.

As was previously stated, masses of zones in an Eulerian simulation are variable; only the

positions of zones are constant. Figures V-10 through V-15 are graphs of density within

the shock tube system at times of 0, 1, 2, 3, 4, and 5 seconds respectively.

Densities at Time 0 (s)

Figure V-10

Densities at Time 1 (s)

..-
m L5 5. D 7.a I ea

Figure V-11

87

Densities at Time 2 (s)

0

D

0.0 2 .s s n 73 lD.O

Figure V-12

Densities at Time 3 (s)

Figure V-13

Densities at Time 4 (s)

0 0
10.0 n 2 5 S O 7 1

Figure V-14

88

Densities at Time 5 (s)

D
0

0.0 2b 10 7 8 10.0,

Figure V-15

These graphs contain the same features as the Lagrangian graphs: a shock wave

moving to the left, a contact discontinuity between the two fluids that is also moving

to the left, and a rarefaction wave that is moving to the right. These features have the

same properties as those of the Lagrangian graph and are described by the same set of

fluid-dynamics equations.

Lagrangian and Eulerian simulations are also subject to the same' stability conditions.

At-low q0 values, the Courant condition is violated, as illustrated in Fig. V-16.

-
d

I 1 I f ho 1.5 5n 73 I L U

c.

Figure V-16

At high q0 values, the features are smeared out:

89

0
-1 Densities at Time 2, q0 = .75

Figure V-17

If q0 is raised even higher, the diffusional stability condition is violated and the program

terminates.

Although the Lagrangian and Eulerian simulations shwe the same stability conditions,

they are quite different in the sharpness with which they resolve features at a given set of

parameters. We see this by comparing graphs of both these simulations at a time step of

2 (s) and a q0 of 0.3.

Densities at Time 2 (s) Densities at Time 2 (s)

W ihs 5n l d DLI

Eulerian

Figure V-18

90

In this figure, we see that the features of the Lagrangian graph are much sharper than

those of the Eulerian simulation. The difference in sharpness is particularly noticeable for

the contact discontinuity, which is clear in the Lagrangian simulation but smeared out over

several zones in the Eulerian simulation.

The smearing of features in the Eulerian case is a result of the artificial diffusion

that is intrinsic to the donor-cell technique. In order to understand why the donor-cell

technique causes diffusion in this manner, as well as to understand why the Courant

condition is present in an Eulerian simulation, we will have to make use of a method

known as truncation error analysis. This method will be discussed in Chapter VI.

91

VI. TRUNCATION ERFLOR ANALYSIS AND THE COURANT
CONDITION

A. Introduction

This chapter is unique in this book in that it is the only chapter in which we will

not write code. We will instead examine a technique known as TRUNCATION ERROR

ANALYSIS, which can be used to analyze the error of finitedifference approximations, and

we will apply this method to determine a condition that must be met to ensure numerical

stability of our fluid-flow model.

This chapter is also unique in that it is almost exclusively based on the manipulation

of partial-merentia1 equations. As was the case before, the use of these equations means

that this analysis is not essential to the construction of simulations. As was stated in the

introduction, mastery of these equations is not a prerequisite to writing finitedifference

codes. This chapter does not present the reader with any additional stability conditions

or methods of representing finitedifference equations; its purpose is merely to clarify the

ones that have already been discussed.

Although not crucial to the writing of our programs, this discussion presents a method

of analysis that is important for a person dealing with finitedifference codes. It serves to

introduce a new method for examining the validity of our finitedifference approximations

and determining the constraints that must be met for our equations to be numerically

stable.

We will apply this method to a number of cases, but first let us return to a previously

discussed method for determining numerical stability. Using the test solution method

introduced in section 111-B, we will address the question of the numerical stability of

the cell-centered finitedifference wave equation. This discussion will give us a familiar

approach to which we can compare our truncation error analysis calculations.

92

B. Numerical Instability of the Cell-Centered Approach

Consider the general form of the first order wave equation:

aT dT
- + a - = 0 . d t ax

Finite-differencing this equation gives

= O .
TI"+1 - T' Tjn+l/2 - q - 1 1 2

+ a 3
d t d x

In the case where a cell-centered flux is used, where

Eq. (VI-2) becomes the cell-centered finite-difference wave equation:

If we now use a test solution for T, choosing

Eq. (VI-4) becomes

(rn+l - rn) (&j+l)dz - eik(j-l)& 1
+ a Aeikjdx

d t 2 d x

or
- 1 eikdx - e-ikdz

= O . 2dx + a d t

We now define a constant z such that

adt
d x

Z f -

which allows us to rewrite Eq. (VI-7) as:

(eikdx - e-ikdx)

2 r = l - z

93

Using the mathematical identity, eie = cos 8 + i sin 8, we obtain

r = 1 - i zs inkdx .

The magnitude of r is then

I T] = d1+ 2z2 sin2 k d x .

(VI-9)

(VI-10)

This value is always greater than one, indicating that the solution will always diverge.

Hence, the cell-centered wave equation is unconditionally unstable.

C. Truncation Error Andysis

We will now approach the same problem of determining the numerical stability of

a wave equation that uses cell-centered differencing with another method of analysis.

Instead of using a test case, the numerical stability of our finitedifference equations will be

determine by truncation error analysis. In this method, partial differential equations are

finite-differenced, and a TAYLOR SEFCES EXPANSION is used to determine the accuracy

of the finite-difference approximations.

A Taylor series expansion is based on Taylor’s theorem which states that for any

differentiable function f (x) :

(VI-11)

where f‘: f“, f”’, etc., are the first, second, third, etc., derivatives of the function f .

Because T is simply a function of j and n, our variables c m be represented as follows:

= T (j d x , n d t)

= T (j d x , (n + 1) d t)

TT+, = T ((j + l) d x , n d t)

q ! ~ ~ = T ((j - l) d x , n d t) .

94

Expanding these values using a Taylor series and substituting the resulting terms into our

cell-centered wave equation, Eq. (VI-4), gives us

Tj” + d t g + 2 dt2 at2 a2T - Tjn +

d t

] = o . 2dx

(VI-12)

In this equation, all terms of order dx3 or higher have been ignored. This equation can be

reduced to
6’T d t a 2 T d T

+a-=O - + --
at 2 d t 2 ax

or

(VI-13)

d t d2T (VI-14)

We will ignore our -FT d t a2T term for a moment, replacing it with an O (d t) to indicate

d T aT
at ax 2 at2
-+a- = ---.

a term of order dt . Our equation becomes

aT aT
at dX

- -a- + O (d t) . --

Differentiating this equation with respect to time gives

d2T
-a- + O(dt) , d 2 T -=

at2 axat

while differentiating with respect to x yields

(VI-17)
d2T a2T

axat ax2
-- - -a- + O(dt) .

We can now use the value for kom Eq. (VI-17) to rewrite Eq. (VI-16):

a t 2

(VI-15)

(VI-16)

(VI-18)

or

(VI-19)

95

which can be substituted into Eq. (VI-14) to obtain

8T aT 1 a2T - +a- = --a dt- +O(dt2) . at ax 2 ax2 (VI-20)

Ignoring the O(dt2) term, we see that we are left with a wave equation that includes a

diffusion term with a negative coefficient of conduction. In other words, if o = -$a2dt

and we ignore our O(dt2) term and the propagation term (a$$), we have

aT a2T
at ax2 - - = 0- (VI-21)

Returning to our discussion of the stability of difhsion equations in Chapter I11 we

can now employ Eq. (111-14), rewritten as

dt
dx2

I- = 1 - 4ff- .

Using the o from our wave equation, we see that

d t
dx2 - I- = 1 +2a2-

(VI-22)

(VI-23)

. From this expression we see that T will always be greater than 1, indicating the

unconditional instability of the centered approach. The error in this type of finitedifference

approximation causes a negative diffusion that causes the system to become numerically

unstable.

D. Truncation Error Analysis of the Donor-Cell Technique

Now let us apply this same form of analysis to a wave equation that is differenced

using the donor-cell technique. Consider a flow that moves from the left to the right, where

a > O ,

then

96

(VI-24)

(VI-25)

(VI-26)

Using these values of Tj-112 and Tj+1/2 in Eq. (VI-2) gives

‘j?+l- T’ Tj” - Tn-
3 + a L o .

d t d x

Expanding this equation using a Taylor series up to the second order terms yields

T’ + . d t x dT + T F dt2 d2T - Tj” + d t

which can be reduced to

dT d t d 2 T dT d x d 2 T
at 2 at2 ax 2 dx2 -’. - + -- +a- - a-- -

Analysis similar to that of of Eqs. (VI-15) through (VI-18) gives the expression

d 2 T - = a2- + O (d x) + O (d t) . d 2 T
at2 ax2

This value can be substituted into Eq. (VI-29) to obtain

-+a-= aT (- t a 2 d t + aT
at ax + O (d t 2) + O (d x d t) .

(VI-27)

(VI-28)

(VI-29)

(VI-30)

(VI-31)

By dropping OUT ag, O (d t 2) , and O (d t d x) terms, we are once again left with a

diffusion equation where
CT = (s a d x 1 - -a2dt) 1 ,

2

but this equation assumes that a is greater than zero; a more general CT is

In order for our equation to remain numerically stable,

d t
d x T = 1 -4~- < 1.

(VI-32)

(VI-33)

(VI-34)

97

or
dt -40- < 0 ;
dx

which, assuming positive dt and dx, becomes

O > O .

Substituting our 0 from Eq. (VI-33) into this equation gives us

or

1 1
2 2

0 = - la1 dx - -a2dt > 0

> O . 1-- la1 dt
dx

This equation is simply a statement of the Courant condition,

dx

(VI-35)

(VI-36)

(VI-37)

(VI-38)

(IV-36)

We see then that an Eulerian calculation that uses the donor-cell technique has the same

Courant stability condition found in Lagrangian codes.

E. Summary of Numerical Instabilities and Artificial Viscosity

Through the use of truncation error analysis to examine the accuracy of our finite-

difference approximation of the wave equation, we have shown that this approximation

represents not only the motion of a wave but a form of diffusion. In the cell-centered case,

the conduction coefficient of this artificial diffusion is negative, indicating a system that is

unconditionally unstable. This coefficient is

1
(r = --a2dt.

2
(VI-39)

This instability can be avoided by using a donor-cell method, which yields a diffusion

coefficient
1 1

0 = --a2dt + - la1 dx .
2 2

(VI-40)

98

This method remains stable as long as the Courant condition is satisfied. This method is

flawed, however; for when we choose a case in which dt is very small compared to d x , 0

becomes large, creating a large amount of artificial diffusion in the simulation. While this

diffusion does not create a numerical instability, it results in a less accurate simulation,

causing sharp boundary layers to become smooth.

In our simulations we will not attempt to avoid this lack of accuracy, but several

methods exist that avoid this problem. One of the more useful of these methods is the

ARTIFICIAL VISCOSITY technique, in which a cell-centered approach is used with an

additional diffusional term added to counteract the negative diffusion intrinsic to the finite-

difference approximations. Truncation error analysis of this method gives aa equation in

the form
dT dT 1 d2T d2T - +a- = --a2dt- f
at ax 2 a x 2 3x2

If the coefficient of artificial viscosity Ua is chosen, such that

u, > (3 a2dt ,

(VI-41)

(VI-42)

the numerical stability of the system can be maintained while increasing the accuracy of

solutions. This method of improving finitedifference codes is a direct result of truncation

error analysis.

Truncation error analysis can be used to determine the validity of finitedifference

approximations, indicate the conditions necessary to maintain numerical stability, and

describe methods by which the accuracy of solutions can be improved. Although it does

not have a major effect on the codes that we are writing in this series of exercises, it helps

to explain some of the reasoning that lies behind these programs. A versatile and powerful

tool, truncation error analysis is essential to the Gerson who wishes to examine the basic

foundations on which finitedifference codes are based.

99

VII. TWO-DIMENSIONAL INCOMPRESSIBLE FLUID FLOW

A. Calculations in Two-Dimensions

Up to this point in this series of exercises, all problems have been one-dimensional.,

thus simplifying our simulations in a number of ways: their equations had only to take into

account changes in a single direction, their boundary conditions have existed at only two

points, and their arrays of variable values have been of a small, one-dimensional sort. For

the systems that we have been dealing with up to this point, a one-dimensional approach

has allowed us to simplify our problems while still generating results that were accurate.

However, few problems can be represented in a single dimension. Our one-dimensional

models assumed both cylindrical symmetry and radial uniformity, two qualities that are

rarely found in the same system. Many more systems can be represented by using two-

dimensional models. These models can represent any system that has uniformity in a single

dimension, including the azimuthal direction used in cylindrically symmetric situations.

The type of two-dimensional code that assumes cylindrical symmetry employs an T-z

set of coordinates. In this type of simulation, cells are defined by two numbers, T and z.

T represents the distance of a cell center fiom the axis of the cylinder, and z represents

the position of a cell center along that axis. The higher the r , the farther away from the

center of the cylinder; the higher the z, the farther down along it.

A second sort of two-dimensional code assumes translational symmetry in one

direction. While changes between cells in such a code may take place in two directions, all

quantities are assumed to be invariant in the third direction. It is this type of simulation

that we will examine in this chapter.

In this sort of code, an i-j set of cell counters are employed, with i representing the cell

number in the horizontal direction and j representing cell number in the vertical direction.

The resulting two-dimensional array of zones, also known as a MESH, is made up of i x j

individual rectangles of length dx and height dy. This mesh appears in Fig. VII-1.

100

J

J

3

2

dY I I
- 0

Figure VII-1

Notice that each cell is referenced by two numbers:- i and j. The position of cell quantities

will now be referenced by two subscripts instead of one: [Quantii&. Notice also that

there are now four one-dimensional mays of fictitious zones: (i, 0), (i, j + l), (O , j) , and

(z + 1, j). These are needed to represent the two-dimensional boundary conditions.

101

We will be using this mesh to simulate incompressible fluid flow in two dimensions.

Our simulations will be Eulerian, allowing for a mesh of rectangles with fixed positions.

Three main variables will be used, as shown in the following table:

PTj = p (i , j) = pressure per unit density

71 ui+112,j = u(i,j) = horizontal velocity

wyj+1,2 = w (i , j) = vertical velocity

Note that pressure per unit density is represented at the cell centers, horizontal velocity at

the right and left walls of the cells, and vertical velocity at the top and bottom cell walls.

A mesh in which variables are configured in this manner is known as a STAGGEBD

MESH. A pictorial representation of a staggered mesh zone appears in Fig. VII-2.

I

ui - 112, j T j

Figure VII-2

1
112 , j

Internal energy, density, and artificial (viscous) pressure arrays are not needed since

the flow is incompressible; and therefore there me no changes in density, no changes in

102

energy due to pdV work, and no shocks that would require an artificial viscosity. Velocity

in two directions and pressure per unit density are the only variables that are needed in

the equations that describe two-dimensional incompressible fluid flow.

B. The Equations of Two-Dimensional Incompressible Fluid Flow

To derive the transport equations of two-dimensional incompressible Eulerian fluid

flow, we begin with our principles of flux and conservation. Advective flux of mass is again

equal to density times velocity:

The total amount of mass moving across a boundary in a given time step is equal to the

mass flux multiplied by the area of the boundary multiplied by the time step:

A Mass = FluxAdt . (rn-2)

Applying this equation along with Eq. (VII-1) to a cell in the mesh gives the following

expressions for changes in mass due to flux across the left, right, bottom, and top cell

Walls:

A Massleft = pui-l/a,j W d y d t (VII-3)

A Massright = - p i + l / % , j w d y d t (rn-4)

(rn-5) A MaSSbottom = p~li , j -1/2 W dx d t

A Masstop = - p i , j + 1 / 2 W dx dt . (VII-6)

In these equations, p is the constant value for the density of the fluid and W is the width

of a cell, its thickness in the third dimension. The change in mass is negative in Eqs. (VII-

4) and (VII-6) because they represent mass being carried out of the cell by rightward

velocities through the right cell wall and upward yelocities through the top.

Mass conservation tells us that the total change in mass is equal to the sum of the

masses that are fluxed across each of the boundaries:

For the incompressible Eulerian case, the total mass of a cell remains constant. Therefore,

A Masstotal = 0 . (VII-8)

which reduces to

or

(VI-9)

(VII-10)

(VII-11)

(VII-12)

Eq. (VII-12) is the two-dimensional finitedifference equation for Eulerian mass flux

in an incompressible system, one of the two major equations that will be used in our code.

It is closely related to the Eulerian one-dimensional mass flux equation, namely

a P a P - + - = o . at ax

In two dimensions, Eq. (V-37) becomes

a p apu apv -+- +-- -07 at ax a y

which, assuming a constant p, becomes

du av
ax a y +-= 0 , -

(V-37)

(VII- 13)

(VII- 14)

which is a partial differential representation of Eq. (VII-12).

104

The second major equation that is used to simulate incompressible fluid flow is the

momentum equation. In a two-dimensional system, this equation becomes two equations,

one representing vertical momentum and one representing horizontal momentum. Each of

these equations is solved over a momentum cell that is staggered such that its center exists

where a velocity is directly represented. Two such momentum cells appear in Fig. VII-3.

vertical
momentum cell

horizontal momentum cell

Figure VII-3

Let us consider the case of the horizontal momentum zone, in which momentum is

in terms of u. Like the mass equation, the momentum equation that is applied to the

two-dimensional cell is very similar to the onedimensional equation, Eq. (V-38):

apu apu2 a&+q) - +-=- at ax dX
(V-38)

This equation is made up of three terms: the rate of change of momentum ($) , an

advective term (w) , and a pressure term . These same three types of terms

105

- - -- -
, .

appear in the two-dimensional equation but with several changes made to the advective

and pressure contributions.

Advective flux of momentum in two dimensions occurs in much the same manner

as advective flux of mass. There are four surfaces on a momentum cell across which

momentum can be carried: the left, right, top, and bottom cell walls. Just as mass flux

in Eq. (VII-1) was density times velocity, momentum flux across each of the surfaces in

the momentum cell is momentum density (fluid velocity x mass density) multiplied by

carrying velocity:

These advective fluxes are illustrated pictorially in Fig. VII-4.

(PUV) i + 112, j + 112

(VII- 15)

(P U ~ i + 1/2, j - 112

Figure VII-4

106

{..*"*'" . ,

As was the case with mass flux, the total amount of momentum moving across a

boundary in a given time step due to advective flux is equal to the momentum flux

multiplied by the area of the boundary multiplied by the time step:

Using this equation to determine the change in the momentum of a cell i + 1/2,j due to

the fluxes shown in Fig. VII-4, we obtain

(VII-17)

(VII-18)

(VII-19)

(VII-20)

These four equations can be combined to form an equation for the total change in

momentum due to advection:

Dividing both sides by the volume of a cell (W dx dy) to generate an expression in terms

of momentum density, we obtain

or

which can be represented in partial differential form as

apu2 a p v
ax dY

(P2)adv = -- - - . (VII-24)

107

In the two-dimensional momentum equation for the horizontal direction, the term
a& that is analogous to the advective term in Eq. (V-38) (ax) is

or
dpu2 dpuv
dX 8Y -

The pressure term of Eq. (V-38) is written for two-dimensional incompressible flow

by first separating it into two components:

(VII-25)

The effect of the real pressure (p) on momentum in the x-direction in two dimensions is the

same a s in one dimension; this term remains in the same form. The viscous pressure term

in two dimensions, however, is rewritten in terms of a true viscosity. This true viscosity

parallels artificial viscous pressure in a manner that can be seen by dividing the viscous

pressure equation into two terms:

These terms can be rewritten using the equation for viscous pressure,

4n 3 = Qo Pzi” c (u:-1,2 - Uzi”+l/Z)

or if negative qy = 0

or
,=-QoPcdx(U r ’dX - U 1) ,

which appears in partial-differential form as

108

if positive

(IV-24)

(VII-26)

(VII-27)

The’ x-direction term becomes

and the y-direction term becomes

When combined, these terms appear as

- %?x + - dqy = -2- (p c d x g) - ; (p c d x g) ,
a x d y dX

which can be rewritten in the incompressible case as

(VII-28)

(VII-29)

(VII-30)

(VII-3 1)

But the term that is used to represent viscosity in two dimensions is actually

-..(-+-) d2U d2u ,
3x2 dy2

where v is a constant known as the KINEMATIC VISCOSITY. The reason that this

constant is used rather than the qocdx and qocdy values in Eq. (VI-31) is to represent

the rate of diffusion of momentum in the fluid in an ISOTROPIC manner, a manner that

does not prefer one direction over another.

Our use of a real viscous term of this type is not meant to imply that d y = dx

but rather to represent diffusion in a way that is not preferential to any direction. The

constant u in this equation is the simplest manner for representing the physical phenomena

of viscosity, which parallels the concept of thermometric conductivity used in our equations

of heat transfer. Both these equations appear as a-coefficient times a second derivative:

0- d2T and P.(-.-), d2U 3%
dX2 ax2 dy2

and both represent the diffusive propagation of a quantity.

109

There are more complicated methods for simulating viscosity which attempt to

preserve the isotropy of the diffusion terms while reconciling the dispaity between the

q equation and the diffusive terms. These methods are beyond the scope of this work,

however, and have never been fully successful. Therefore we will use a constant u.

Now that terms for advective ffw and pressure (now pressure plus diffusion) have

been determined, a two-dimensional equation for Eulerian change in momentum in the

x-direction can be written

-- adv term + pressure term = 0 (VII-32) at

dpu dpu2 dpuv ap a2u 8% - at +-+- ax a y + - - p u (- + -) ax dx2 dy2 = o .

Because density is constant in the incompressible case, we divide by p to obtain

--+-+-- au au2 auv --E+.(-+-), d2U a2u
at ax a y ax 3x2 ay2

(VII-33)

(VII-34)

where P is equal to p / p . Similarly, the equation for change in momentum in the y-direction

is

(VII-35)

These two equations, along with the mass equation, Eq. (VII-14) [in finite-difference form

Eq. (VII-12)] make up yet another form of the Navier-Stokes Equations and form our

mathematical model of two-dimensional Eulerian incompressible fluid flow.

C. Solving Two-Dimensional Fluid-Flow Equations

To solve the equations of two-dimensional incompressible fluid flow, we will make use

of a method that combines both explicit and implicit solving techniques. This method is

used because of a stability condition that is present in the pressure term in the momentum

equation.

110

This stability condition can be explained by examining the general equation for sound

speed. For an ADIABATIC system, meaning a system that contains no processes that

either absorb or generate heat, this equation is

It can be manipulated to obtain

dp = c2dp.

The pressure term for the momentum equation L*
(P 4

1 a p c2ap
p a x p a x '
-- = --

(VII-36)

(VII-37)

can then be rewritten as

(VII-38)

In an incompressible system p is a constant, meaning that = 0. But, pressure

is not a constant, indicating that 2 # 0. We see then that c2 --$ 00, but the Courant

condition states that

(VII-39)

indicating that our system will be unstable if pressures are computed explicitly.

Our onedimensional fluid simulations have shown, however, that the advective terms

of the momentum equation can be solved explicitly without becoming unstable, and the

viscous terms are limited only by the diffusional stability condition:

udt 1 < - dx2 2
udt 1 < - . dy2 2

-

-

(VII-40)

(VII-41)

while the pressure contributions in the momentum equations must be computed

implicitly, then, the rest of the terms can be computed faster using an explicit method.

While it is conceivable that all terms of these equations can be computed using an implicit

method, a better technique is to calculate the advective and viscous terms using an explicit

solver, then calculate the change in pressures with an implicit solver.

111

This calculation is done by first grouping together the advective and viscous terms of

the momentum equations. Equations (VII-34) and (VII-35) become

- = d U d U 2 (---"""+"G+w))- d 2 U d2u
at dx d y

at dx d y
d V duv dv2

dP

Using the finite-difference approximation of and g, we obtain

d 2 U d 2 U dP n U . n+l . = u ~ + ~ / ~ , ~ + d t 2+1/2,3

duv dv2
n+l n + d t (--- -

' i , j + 1 / 2 = ' i , j+1/2 ax d y

We now define quantities ?i and ij such that

- +&(-E- d X

2,3+1/2 = 2,3+1/2 + dt -n+l - v n . v. .

(VII-42)

(VII-43)

(VII-44)

dP
d X 2 dY

+ I/ (e + $)) - dt- . (VII-45)

auv 8% d2v

3% d2v
- dY + (a22 + @))
E+V(G+@>) dY -

These terms represent the horizontal and vertical velocities at the next time step, barring

any contribution made by pressure. They allow us to rewrite our momentum equations as

(VII-46)
-n+l dP

uY:l)2,j = ui+1/2 , j - dt- dX
-n+l dP

' i , j+1/2 dY
(VII-47) n f l

= v ~ , ~ + ~ / ~ - dt- .
In finite-difference form, .ti and ij appear as

) En+l
2+1/2,j = ui+1/2,j dY

n - d t [(~?+1,;; u ? , j) + ((u v) i + 1 / 2 , j + 1 / 2 - (~ u) i + 1 / 2 , j - 1 / 2

)I ui+1/2, j+1+ ui+1/2 , j -1- 2 ~ i + 1 / 2 , j

dY2
(VII-48)

%+3/2,j + u i - 1 / 2 , j - 2ui+1/2,j

d x 2

(VII-49)

112

.., - .
- .

i \ . i - . r : . .A'&.

In these equations the advective terms can again be calculated using either a donor-

cell or cell-centered technique. In this case, a cell-centered approach is allowable because

the viscous term prevents numerical instability in a manner described in Chapter VI. This

approach results in a code that is able to resolve delicate physical phenomena that occur

at low viscosities.

The KARMAN VORTEX STmET, a type of turbulent fluid flow, is one such

phenomenon. This type of flow can be examined by simulating a system in which fluid

flows in from the top and bottom thirds of the left wall and out through the entire right

wall. At low viscosities, this system will form a fluctuating stream called a vortex street.

This phenomenon will be discussed in more detail later in this chapter.

Use of the donor-cell technique results in a code that is able to handle more violent

phenomena, such as the rushing of fluid over a stationary block. It allows for systems

at higher velocities and with more change in velocity to be simulated without becoming

numerically unstable but loses much of the precision of the cell-centered technique. Because

the Karman vortex street will not evolve with this imprecision, the cell-centered technique

is used in the examples in this chapter.

Using the appropriate technique to express the advective terms, twc-dimensional

arrays of fi and ij are computed using an explicit method. The resulting arrays are then used

to compute the velocities and pressures implicitly. The equations that are implicitly solved

are the mass equation (VII-12) and finitedifference versions of Eqs. (VII-46) and (VII-47):

(VII-50)

(VII-51)

113

The function that converges to zero in the iterative solution is the mass equation. This

convergence is achieved by defining a quantity Di7j such that it is the difference between

the momentum equation and its desired value of zero:

Because fi and 5 are calculated before any implicit calculations are done, they do not

change during the iterations. The vertical and horizontal velocities in our definition of D

are therefore functions only of pressures, as shown in Eqs. (VI-46) and (VI-47). Newton's

method [Eq. (111-24)J can therefore be applied to the solution of the pressures with D(P)

replacing f (x) . The resulting equation is

(z) i , j is computed using the chain rule, which says that for a function

y = F(a(x) , b(x) c(x) . . .)
d y dFda dFdb dF dc ----+--+ - --...
dx da dx db dx dc dx

In our case this means

(VII-52)

(VII-53)

(VII- 54)

These partial-differential terms can be rewritten using Eqs. (VII-50) and (VII-51) and our

definition of D:

which reduces to

(E) dP i j 2 dx (2) dx + (2) (2)+
(VII-55)

(VII-56)

114

Consequently, our equation for the implicit updating of pressures is

where
A 1
PO!=

2dt (& + &)

(VII-57)

(VII-58)

Through the use of this equation along with the fi and a equations [Eqs. (VII-

48) and (VII-49)], two-dimensional incompressible Eulerian fluid flow can be accurately

represented. These equations make up a method that uses both explicit and implicit

solving techniques to simulate the motion of an incompressible fluid computationdy.

D. Computational Implementation of Equations

Our program is once again structured in five major sections: setup, checks and

incrementations, boundary conditions, variable updating, and output; but the interaction

of these sections is slightly different from that of previous codes. Our two-dimensional

code is configured as in Fig. VII-5.

Setup

1 InitialB.C. I

Figure VII-5

115

Notice that in this figure, three Merent types of boundary conditions appear, along with

an explicit/implicit solver. Each of these will be discussed, but first let us examine the

setup routine.

This procedure includes the same time variables present in our previous finite-

difference codes (dt, pt, etc.) and the following additional variables:

ibar and jbar - - the number of interior zones in the x- and y-directions

den and ylen - - lengths in the x and y-directions

dx and dy - - - the horizontal and vertical lengths of a zone

m u - - - - - - - the kinematic viscosity

P, u and v - - - -two-dimensional arrays of pressures and velocities

PO, u0, and v0--the intial values of the P, u, and v arrays
1 beta- - - - - - - -

2d t (&+*) P -
ur, ul------ the fluid velocities normal to the right and left walls

vt, vb - - _ _ - - the fluid velocities normal to the top and bottom walls

Dtest ------ the accuracy to which Di,j should converge

In certain cases, output may be required at regular intervals beginning after a certain time.

(Every 10 seconds after 100 seconds have elapsed, for example.) To do this, an optional

variable btime can be used to represent the time that the program should begin to call

the output procedure. The check for output would then become an “and” statement that

checks both for pt i ptime and st i btime.

The setup procedure assigns alI read in constants and calculate d x , dy, and beta.

Velocities and pressures should be set to their initial values. Dtest has the dimensions of

s-l, a velocity divided by a distance, and shouldbe assigned a value of a characteristic

velocity of the system multiplied by a value between 1/100 and 1/1000 and divided by a

length of a cell. For example, for a system where the major inflow of fluid was from the

left, 0.005 * ul/dx would be a reasonable value to assign to Dtest.

116

Optionally, a perturbation can be added to the initialization routine, which allows for

turbulent phenomena such as the Karman vortex street to develop more rapidly in our

simulations. A perturbation is added by assigning a pinwheel of velocities surrounding

a point somewhere near the center of the mesh i = i/3, j = j/2, for example. In this

vicinity, velocities should be assigned:

-

(VI-59)

(VII-60)

(VII-61)

(VII-62)

where perturb is a velocity typical to the system. For example, in a system where the

major i d o w of fluid is at the left wall, perturb could be equal to ul.

Flow velocities at the cell wall must be assigned so that the amount of inward flow is

equal to the outward flow. That is

or

(VII-63)

(VII-64)

where Cuout and Cvout are the sums of the velocities of all outward flowing zones and

CUin and Cui, are the sums of the velocities of all inward flowing zones. This constraint

is necessary to ensure the conservation of mass in an incompressible system and must be

applied according to the system that one wishes to represent. For example, if velocities at

the top and bottom are set to zero, inflow of fluid is fcom the bottom and top thirds of

the left wall, and outflow occurs all along the left wall, ur would be equal to Qul.

These velocities are assigned at the wall in an initial boundary condition procedure

that is called only once during the program. This procedure assigns the ur value to the

117

appropriate zones in the u(0,j) array, ul to the u (ibar,O) array, vb to v(i,O), and vt to

the v(i,jbar) array. In the Karman vortex street problem, for example, ur, vt , and vb are

assigned to all the elements of their respective arrays, and ul is assigned over the range

u(0,l) to u(O,jbar/3) and u(Ojbar-(jbar/3)) to u(0,jbar). A value of zero is assigned from

4 + 1 to j - - 1. Note that a value j - 4 is used rather than % to preserve the symmetry

of the system in cases when 7 is not divisible by three. The initial boundary need not

assign pressures for the ghost zones, however, as the pressure values in the ghost zones are

never used.

The initial boundary condition routine that sets flow velocities in and out of the

system is contrasted with the tangential boundary condition routine, which is called at

the beginning of each time cycle. This routine sets the flow velocities in the ghost zones

that run parallel to the walls of the system: o at the left and right, and u at the top

and bottom. These velocities are usually assigned using a FREESLIP METHOD, which

assumes that fluid running parallel to the walls experiences no friction with that surface.

This sort of boundary condition is used in situations where the layer of fluid that is affected

by ji-iction with the wall is much smaller than a cell. In these cases the effect of friction is

negligible, allowing it to be approximated through the use of tangential velocities outside

the walls equal to the tangential velocities inside the walls. This condition is expressed in

the following equations:

u(i, 0) = u(i, 1)

u(i, jbar + 1) = u(i, jbar)

.(O,j) = 4Lj)
v(ibar + 1,j) = v(ibar,j)

(VII-65)

(VII-66)

(VII-67)

(VII-68)

which make up the tangential boundary condition routine that must be computed every

time cycle.

118

There is also a third type of boundary condition procedure, the outflow boundary

condition routine. This routine is called at every implicit iteration to update the velocities

at any wall at which outflow occurs. Its purpose is to assign outflow velocities that

accurately represent the outflow velocities of the system, while maintaining the balance

between inward and outward flow as shown in Eq. (VII-64).

In order to accurately represent the physical system, the outward flow at a given cell

wall must be proportional to the outward flow before that wall. 'That is

UoutT+l/2,j c("-%-1/2,j

Vouti,1/2 c(vi,3/2 ,
while also maintaining Eq. (VII-64).

By specializing to the case where there is no inward or outward flow at the top and

bottom walls, Eq. (VII-64) can be written as

or

(VII-69)

(VII-70) Cu~+1/2 , j = C u 1 / 2 j *

We can now derive an expression for u ; + ~ / ~ , ~ . As u ; + ~ / ~ , ~ is proportional to

where A is a constant.

Substituting this equation into Eq. (VII-70) we obtain

or

(VII-71)

(VII-72)

(VII-73)

119

We then substitute this value of A into Eq. (VII-71) to obtain an expression for outward

boundary conditions for the Karman vortex street problem:

(VII- 74)

This equation is applied to the array of right fictitious zones at every implicit iteration. It

describes the outward boundary conditions for the Karman vortex street problem.

Returning to the question of solving our equations using a partially-implicit method,

we see that the code that must be written has been described to a large extent. The variable

updating portion of the program is divided up into two sections: an explicit routine that

computes fi and V, and an implicit routine that computes pressures and horizontal and

vertical velocities.

The explicit routine is simply a double loop that computes ti and V values for all cell

and are calculated only once edges except for those at the boundaries of the system;

each time step, using Eqs. (VII-48) and (VII-49).

The implicit routine is similar to the solver used in Chapter 111. This section consists

of a loop that iterates until the values of D have converged to within Dtest. At the

beginning of each iteration, a variable Dmax is assigned a value of zero. The program

then moves into a double loop that calculates Di,j for every point within the mesh and

stores the largest absolute value for Di,j as Dmax. Pressures are reassigned according to

Eq. (VII-57), velocities are updated, and outflow boundary conditions are implemented.

A test is then made between Dmax and Dtest: if D has converged to within Dtest, the

program moves to the next time step; if D has not yet converged, the loop iterates. This

implicit loop should not be repeated more than about 100 times. An example for the

coding of this loop is the following:

times = 0

100 Dmax = 0

c.. compute new D’s

120

do 200 i = 1, ibar

do 200 j = 1, jbar

D(i, j) = (u(i, j)-u(i-1, j))/dx + (v(i, j)-v(i, j-l))/dy

if (abs(D(i, j)).gt.Dmax) Dmax = abs(D(i, j))

200 continue

c.. compute P’s

do 300 i = 1, ibar

do 300 j = 1, jbm

P(i, j) = P(i, j) - (beta*D(i, j))

300 continue

c.. compute u’s and v’s

do 300 i = 1, ibar-1

do 300 j = 1, jbar

u(i, j) = ubar(i, j) + (dt/dx)*(P(i, j)-P(i+l, j))

300 continue

do 400 i = 1, ibar

do 400 j = 1, jbar-1

v(i, j) = vbar(i, j) + (dt/dy)*(P(i, j)-P(i, j+l))

400 continue

times = times + 1

c.. reset boundary conditions

total = 0

do 500 j=1, jbar

total = u(ibar-1, j) . , total

500 continue

do 600 j=1, jbar

u(ibar, j) = u(ibar-1, j)*(2./3.)*(jbar*d/total)

121

600 continue

if ((Dmax.lt.Dtest).or.(times.gt.lOO)) goto 1000

goto 100

1000 return

end

The program should contain an output routine that represents the system in a way that

is meaningful to the user. One useful output technique is the plotting of STmAMLINES,

lines that indicate the path along which the fluid is flowing. These are determined by

examining the direction of the motion of an arbitrary point in the fluid. Consider the

following case:

Figure VII-6

In this diagram, d3 represents the displacement of the fluid at a point i j over a time dt .

This vector is made up of two components, d x and dy. The values of d x and d y are the

horizontal and vertical velocities multiplied by the time step:

d x = u d t

d y = v d t .

122

(VII-75)

(VII-76)

A function +(x,y) can be deked such that it is constant along the motion of the

fluid. Along d 3 , then,

d $ = O .

Returning to the mathematical identity expressed in Eq. (VII-53), we see that

(VII-77)

(VII-78)

Substituting values from Eqs. (VII-75), (VII-76), and (VII-77) this equation becomes

(VII-79)

or

and

o=-u+-v. a+ a+
ax d y

To solve this equation for 2 and $!$, we substitute in the following values:

(VII-80)

where A and B are new variables. Equation (VII-80) then becomes

-A(uv) + B(uv) = 0

or

A = B .

If we choose A = B = 1, Eqs. (VII-81) and (VII-82) become

and

-V - --
dX

= U .
8.111
8Y
-

(VII-8 1)

(VII-82)

(VII-83)

(VII-84)

(VII-85)

(VII-86)

123

By using Eq. (VII-85) in the mass equation (VI1-14), we obtain

-(-)+;(-g)=O a+
ax dy

= o . a2+ a2+
dxdy dxdy

(VII-87)

(VII-88)

This equation indicates that if either of Eqs. (VII-85) or (VII-86) is used to compute $

over a system that satisfies the Eulerian mass equation, the other one will be automatically

satisfied. Values of +, as described by either Eq. (VII-85) or Eq. (VII-86), are constant

along the direction of fluid flow. A contour plot of the two-dimensional array of @'s will

therefore indicate the shape of the flow in the system. This array is numerically calculated

by using + values that exist at the cell corners:

(VII-89)

Because velocities at the bottom cell wall are constant and therefore define a

streamline, psi's along this boundary can all be set to a constant, 0 for example. The rest

of the psi array can be calculated using the finitedifference approximation of Eq. (VII-86),

nainely

or

+i+1/2,j+1/2

In code form this equation becomes

(VII-90)

(VII-91)

psi(i,j) = psi(i,j-1) + dy * u(i,j) . (VII-92)

Lines of constant psi can be plotted by using a contour plot routine, which will result

in graphs that indicate the motion of the fluid at any given time step. These graphs use

the reference frame where the obstacle is stationary but can be placed in the reference

kame of the fluid by calculating psi as

psi(ij) = psi(i,j-1) + dy * (u(ij) -ur) . (VII-93)

124

Contour plots of + in both reference frames appear in the results portion of this chapter.

The output procedure is the last section that must be written in our incompressible

two-dimensional Eulerian fluid-flow code. This code is structured as was shown in Fig. VII-

5. A version of this code that includes streamlines can be used to examine the Karman

vortex street problem, generating results such as appear below.

E. Simulation of the Karman Vortex Street

There axe several different cases that can be examined using a two-dimensional fluid

code. By varying the dimensions of the object, the speed of the flow, and the viscosity

of the fluid, flow at various REYNOLDS NUMBERS can be examined. The Reynolds

number is a dimensionless quantity that measures the ratio of advective effects to viscous

effects in a system. For the Karman Vortex Street problem, it is calculated as

hobsum
U

Re = , (VII-94)

where hobs is the height of the obstacle, v is the viscosity of the fluid, and u is the velocity

of the fluid at a point far away from the obstacle. In our case

U m M U T . (VII- 95)

As the Reynolds number increases, the system is likely to become more and more turbulent.

At low Reynolds numbers (numbers lower than about 4), the flow is steady and exhibits

no flow separation. This behavior can be seen in Fig. VII-7 which is taken at a time of 25

(s) using the following parameters: xlen = 50 (cm), ylen 15 (cm), ibar= 50, jbar = 30, anu

= 1.25 (cm2/s), ul = 1.5 (cm/s), dt = 0.1 (s), and PO, u0, and v0 are all 0. The object

is 5 (cm) wide, taking up the middle third of the left wall. This system has a Reynolds

number of 4.

125

Streamlines at time 25
Reynolds Number = 4

Figure VII-7

Note that in this simulation dx is not equal to dy; this inequality demonstrates the fact

that these quantities need not be equal for accurate results to be obtained.

At slightly higher Reynolds numbers (numbers above 4 to about 40), a pair of

VORTICES form behind the object. These are areas where fluid is not moving along

with the main flow, but rather circling behind the object. At these Reynolds numbers, the

direction of the flow in some areas behind the object is opposite to that of the main flow

stream. A flow containing vortices is illustrated in Fig. VII-8, which is generated using the

same parameters as Fig. VII-7 except for m u which is 0.2 (cm/s2).

Streamlines at time 25
Reynolds Number = 25

Figure VII-8

126

At Reynolds numbers between 40-500, the vortices become larger and begin to move

away from the object as is illustrated in Fig. VII-9 (mu = 0.02; all other parameters are

the same as in the previous graph).

Streamlines at time 25
Reynolds Number = 250

Figure VII-9

Notice that in this graph, the vortices are asymmetric. In nature, this asymmetry is

initiated by the presence of miniature “flaws” in the fluid. Numerically, this asymmetry is

a consequence of the perturbation that was added in the setup procedure.

- The vortices move away from the object one‘at a time in an alternating fashion,

creating a fluctuating stream, the K m m vortex street. Figure VII-10 shows the same

system as Fig. VII-9 but at a later time, when the Karman vortex street has has time to

develop.

Streamlines at time 50
Reynolds Number = 250

Figure VII-10

127

Note that the vortices that are shed from the object move downstream to the right with

the main fluid flow, and cannot be seen in this graph.

Figure VII-11 shows a fully developed street at a time of 100 (s). Other parameters are

the same as in the previous graphs, except for jbar, which has been lowered to 15 in order

to demonstrate that the vortex street can be simulated at relatively coarse resolutions.

Streamlines at time 100
Reynolds Number = 250

Figure VII-11

- The vortex street can be better seen by placing the streamlines in the reference frame

of the fluid, as if the object were moving and the fluid were stationary. This approach

results in graphs such as Fig. VII-12.

Streamlines at time 100
Reynolds Number = 250

uref = 1 .O (fluid reference frame)

Figure VII-12

128

The fluctuations in the Karman vortex street occur at regular periods, as can be seen

in the next series of graphs, obtained using the same parameters as the previous graph.

Graphs appear in the reference frame of the object (uref = 0.).

Streamlines at time 100
Reynolds Number = 250

Figure VII-13

Streamlines at time 106.25
Reynolds Number = 250

Figure VII-14

Streamlines at time 112.5
Reynolds Number = 250

Figure VII-15

Streamlines at time 11 8.25
Reynolds Number = 250

Figure VII-16

Streamlines at time 125
Reynolds Number = 250

. Figure VII-17

129

Analysis of these graphs indicates that the stream is fluctuating with a period of roughly

15 seconds.

We can use this period to calculate the STROUHAL NUMBER, which relates the

period of the stream to the size of the object and the rate of the flow. The Strouhal

number is a dimensionless quantity that is calculated as

h o b s

UcoTstreet
St = , (VII-96)

where hobs is the height of the obstacle, uco is the velocity of the fluid at a point far away

(in our case uT), and rStreet is the period of one oscillation.

Experimentally, the Strouhal number in a Karman vortex street has been observed to

be about 0.20. For our computational system, we calculate a Strouhal number of about

0.33. This difference in values can be explained by examining the differences between the

laboratory experiments and our computational system.

In the laboratory, the Strouhal number is calculated by sending flow over a cylinder,

whereas the computational results are obtained by blocking off the flow in a portion of

a boundary. These two methods M e r in that the fluid flow around the computational

“object)’ moves parallel to the main flow, whereas the fluid flow around the laboratory

cylinder moves outwards around the cylinder, spreading out before finally becoming parallel

to the main fluid flow. Consequently, the object simulated computationally corresponds

with a smaller experimental object. This effect is illustrated in Fig. VI-18.

Experimental Computational
Cylinder Object

Figure VII-18

130

Our experimental Strouhal number is then smaller than the number calculated

numerically. Assuming a ratio of about 2:3 between our real and computational objects,

our computational Strouhal number would then relate to a experimental number of about

0.22, a value consistent with observed data.

At very high Reynolds numbers (above about 500)) miniature turbulent fluctuations

occur within the vortex street and begin to drown out the fluctuating stream itself. Our

computational results seem to simulate this case (m u = 0.005):

Streamlines at time 100
Reynolds Number = 1000

Figure VII-19

What we are actually observing in this graph, however, is not the turbulent fluctuations

that drown out the vortex street, but rather a numerical instability that results from a

violation of the diffusional stability condition. Viscosity has been reduced to a level at

which it no longer counteracts the negative diffusion intrinsic to the centered difference

momentum equation, and the solution becomes full of random highs and lows. This

instability can be seen clearly by placing the graph in the reference frame of the fluid.

131

Streamlines at time 100
Reynolds Number = 1000

uref = 1 .O (fluid reference frame)

Figure VII-20

We have seen that the Karman vortex street can be modeled computationally and

have discussed some of the theory associated with this phenomenon. We have also

examined some of the inaccuracies that can result from our numerical approximations.

In Chapter VIII, we will apply our two-dimensional fluid code to the simulation of more

complicated systems, examining the modeling of obstacles placed within the flow passage

itself and the simulation of heat flow.

132

VIII. ADDITIONS TO TWO-DIMENSIONAL FLUID CODE

A. Flow Regions with Obstacles

In this chapter we will be discussing several additional problems that can be modeled

using a two-dimensional fluid flow code. The first of these problems is one in which an

OBSTACLE is present in the flow region. For our purposes, we will define an obstacle as

an object that prevents fluid from flowing through a specified region. Unlike the object

simulated by the use of boundary conditions in the K m a n vortex street problem, the

obstacles that we will be examining in this section are found within the mesh and can be

placed adjacent to the walls or anywhere in the flow region.

Obstacles are simulated by creating a boundary that exists within the flow region.

For purposes of simplicity, we will limit the shape of our obstacles to be rectangles, but in

principle, obstacles can be of many different shapes. A diagram of a rectangular obstacle

appears in Fig. VIII-1:

jobt

jobb
iobl iobr

Figure VIII-1

133

In this figure, iobl and iobr are the i values at the left and right of the obstacle, and

jobb and jobt are the j values at the bottom and top of the obstacle. These can be chosen

to have values anywhere within the mesh, including adjacent to the walls.

Over the walls of the subregion described by these four values, the velocities normal

to the obstacle are set to zero, and the tangential velocities are set according to the desired

boundary conditions, for example, fi-ee slip boundary conditions. Values are assigned in

an obstacle routine that is called at every implicit iteration.

This routine is made up of two main parts, the first of which sets the normal velocities

to zero. This means that uiobl-1/2,j and uiobr+1/2,j are set to zero from jobb to jobt, and

vi,jobb-1/2 and 'u]i,jobt+l/2 are set to zero fi-om iobl to iobr. In this is done with two loops,

which appear as follows:

do 100 j=jobbjobt

u(iob1-1,j) = 0

u(iobr,j) = 0

100 continue

do 200 i=iobl,iobr

v(ijobb-1) = 0

v(ijobt) = 0

200 continue

Note that in this code, u(iob1-lj) and v(i,jobbl) are set to zero rather than u(iob1,j) and

v(i,jobb), because velocities exist at the right aqd top of the cells, whereas the normal

velocities at the bottom and left of the obstacle are at the bottom and left of the cells.

If free-slip boundary conditions are desired, tangential velocities at the obstacle walls

The should be set to the value of the tangential velocities of the surrounding flow.

134

assignments are similx to those of the wall tangential boundary conditions described in

the previous chapter. In this case

and

from jobb + 1/2 to jobt - 1/2, and

%+1/2,jobb = %+1/2,jobb-l

and

(VIII-2)

(VIII-3)

from i obr+ l /2 to iobZ-l/2*

Tangential velocities are not set to zero at the corner of the object because they would

act as normal velocities at these points. Equations (VIII-1) through (VIII-4) appear in

code form as:

do 100 j=jobb,jobt-1

v(iob1,j) = v(iob1-lj)

v(iobrj) = v(iobr+lj)

100 continue

do 200 i=iobl,iobr-1

u(i,jobb) = u(i,jobb-1)

u(i,jobt) = u(ijobtf1)

200 continue

Note that in this code, the loops run from jobb to jobt-1 and iobl to iobr-1, again due to

the use of a staggered mesh with u's and v's that exist at the right and top cell walls.

With these two elements, the setting of the normal velocities to zero and the use of

ftee slip boundary conditions, a routine can be written that creates a rectangulx obstacle

135

in any subregion of the mesh. Multiple objects can be simulated by multiple calls to the

obstacle routine, with jobbl, jobtl, iobrl, and iobll specifying the dimensions of the first

obstacle; jobb2, jobt2, iobr2, and iobl2 specifying the dimensions of the second obstacle;

etc. These calls must be made at every implicit iteration, resulting in a two-dimensional

fluid code as illustrated in Fig. VIII-2.

Start

I Setup

Initial B.C.

Obstacle 2 (iobb 2, jobt 2...) *I

A End 1

D*a% < Dte5t

Figure VIII-2

Our program can now be used to simulate a number of interesting situations. This

fist series of plots uses the following parameters: d e n = 40 (cm) ylen = 10 (cm), ibair =

40, jbar = 10, and ul = ur = 1.0 (cm/s). The obstacle parameters are jobb = 1, jobt =

5, iobl =11, and iobr = 15. The dimensions of the obstacle are 5 (cm) x 5 (cm), and it is

placed 10 cm down the flow passage.

136

Figure VIII-3 is taken at a time of 5 (s) with a viscosity of 1 (cm2/s). This results in

a Reynolds number of 5.

Streamlines at time 5
Reynolds Number = 5

Figure VIII-3

If the viscosity is reduced to 0.1, so that the Reynolds number is 50, a vortex forms

behind the object. This is illustrated in Figs. VIII-4 through VIII-6.

Streamlines at time 5
Reynolds Number = 50

Figure VIII-4

137

Streamlines at time 10
Reynolds Number = 50

Figure VIII-5

Streamlines at time 15
Reynolds Number = 50

Figure VIII-6

138

In these last three graphs, we can see the presence of a numerical instability that

occurs when fluid accelerates. A careful truncation error analysis indicates that the finite-

difference approximation of the momentum equation has a negative diffusion term that

is associated with the acceleration of the fluid. When the fluid is accelerating, as is the

case when the fluid moves over the object from the right, this negative diffusion results in

a numerically unstable solution. We can see this instability in the jagged streamlines in

this portion of the graph. When the fluid is decelerating, as is the case as the fluid moves

away from the object into the open flow channel, there is an additional positive diffusion.

Hence, this portion of the graph remains numerically stable.

As viscosity is again lowered, the contrast between these stable and unstable regions

becomes clearer. Figure VIII-7 illustrates the results of a simulation with a viscosity of

0.02 (cm2/s)

Streamlines at time 15
Reynolds Number = 250

Figure VIII-7

B. Heat Transfer

The second topic in our study of additions to a two-dimensional incompressible fluid

flow code is the modeling of heat traasfer. This modeling requires the addition of a new

139

array of temperatures that exists at the cell centers, and must be declared and initialized

in the setup procedure. The resulting mesh is pictured in Fig. VIII-8.

Figure VIII-8

The equation that describes the evolution of temperature is similar to the two-

dimensional momentum equation, Eq. (VII-34). The two-dimensional temperature

equation is

aT d u T d v T d2T d 2 T -+- (VIII-5)

where 0 is once again the thermometric conductivity of the material.

This equation is made up of three major types of terms: the explicit change in

temperature with time (g)) the advective terms in both directions 2) F) , and

the diffusion term (e CT T+T c)) . These terms are the result of an analysis similar to

that used to derive the two-dimensional momentum equation in Chapter VII.

(

In finite-difference form, Eq. (VIII-5) appears as

140

or

Temperatures at cell walls are calculated through the use of the donor-cell method, by

creating two two-dimensional arrays: idnr and jdnr. These arrays are made up of integers

that are calculated at the cell walls. idnr is calculated from the u velocities at position

i + 1 / 2 , j and is zero if the flow is from left to right and 1 if the flow is from right to

left. jdnr is calculated from the v velocities at position i, j + 1/2 and is zero if the flow is

upwards and 1 if the flow is downwards. These two arrays are then used in a double lookup

fashion, as was done in Chapter V. The advective terms of Eq. (VIII-5), thus appear as

(U(i ,j) *T(i+idnr (iJ) J) - u(i- 1, j) *T(i- 1 + i b (i- 1 j) ,j)) /& duT
d X
-=

-- dvT - (v(i,j)*T(i,j+jdnr(i,j)) - v(iJ-1)*T(i,j-l+jdnr(i7j-l)))/dy .
8Y

Equation (VIII-7) is implemented in a double loop just before the the explicit calculation

of fi and 6. The addition of this double loop is the first major modification that must be

made to our code to simulate the transfer of heat.

The second major modification is the addition of a buoyancy term to the 6 equation.

This term represents the upward acceleration created by a decrease in density due to the

heating of the fluid. This upward acceleration is'equal to the gravitational force on the

system multiplied by the ratio of the density of the fluid to a given reference density:

,

Pi,j
--9 ,

PO

141

where pi,j is the density at a point i, j , po is the base density of the fluid, and g is the gravity

of the system, defined as negative in the downward direction. On Earth g = -9.8 m/s2.

This use of a change in density creates an apparent inconsistency between the

buoyancy term and the the rest of the terms in the vertical momentum equation. The

vertical momentum equation now appears as

-+- P (VIII-8)
av auv + - = - E + v (a a , + _) - - g . av2 d2V

ay ax2 ady2 Po at ax ay

In this equation, all terms assume constant density except the buoyancy term. This

approximation is called the BOUSSINESQ APPROXIMATION for natural convection

problems. It can be used in cases where the driving forces for velocity are the result of

small changes in density. Here, the buoyancy term is O(dp) while the effect of changing

density on the other terms in O(dp2). Since dp is very small, dp2 is negligible. For the

buoyancy term, the following analysis is used to express the driving force in terms of

temper at ure .

We begin with Eq. (IV-23):

P = (7 - 1)pl . (IV-23)

and rewrite I , the internal energy, as the temperature times the specific heat, TC,, to

obtain

P = (7 - l)pC,T

or, solving for p

(VIII-9)

(VIII-10)

Pressure in this equation is actually made up of two different pressures: the reference

pressure, or nominal pressure of the surroundings, and the dynamic pressure, which changes

according to the motion of the fluid. Because our pressure terms have only dealt with the

change in pressure, our p from Chapter VI1 was essentially P d y n , the dynamic pressure. In

Eq. (VIII-10) p is no longer pdyn but the sum of the nominal and dynamic pressures:

142

(VIII- 11)

Substituting this term into Eq. (VII-10) gives us

(VIII-12)

But the nominal pressure of the system is much larger than the dynamic pressure, so we

can ignore Pdgn in this equation and write

(VIII-13)

. The substitution of this equation into our definition of the buoyancy term yields

(VIII- 14)

where TO is the reference temperature of the system. Assuming that the nominal pressure

is unchanging, this equation becomes

P TO
-g=gl,- Po

If we define a variable S such that

then

T=To(l+S);

and the buoyancy term becomes
9 PS -=-

Po 1 + 6 '
By expanding the & term we obtain a series

1 - = 1 - s+s2 - s3.
1+S

(VIII-15)

(VIII-16)

(VIII- 17)

(VIII- 18)

Ignoring the terms of second and higher order, we can use this expansion to write our

buoyancy term as

E M [l- (T;OTo)] 9 .
PO

(VIII-19)

143

If we look at this term in conjunction with the pressure term and expand pressure to

represent both the nominal and dynamic elements we have

To maintain atmospheric equilibrium, the nominal pressure must satisfy the equation

where C is some constant. Equation (VIII-20) can also be written as

Pn C - = g y + - .
Po Po

We can use this value in our reference pressure term to obtain

(VIII-21)

(VIII-22)

This g cancels with the g from the buoyancy equation, leaving

dP T-To
TO -9 --

aY
If we choose TO to be 273"K, then the buoyancy term becomes

where T is in expressed in "C. This is more often written as

where /3 = $
term:

A. Our equation for 6 is then equal to the old 6 modified by a buoyancy

ebuoy = enoheat - gPTdt , (VIII-23)

where g is negative for a downwad force of gravity.

144

The third major modification that must be made to simulate the effect of heat in a two-

dimensional incompressible fluid is the implementation of thermal boundary conditions.

These conditions should be calculated once per time cycle in a procedure that is called after

the tangential boundary conditions. There are two types of thermal boundary conditions

that we will use: INSULATED and PFESCFUBED.

Insulated means that there is no heat fluxed across the wall in question. This situation

occurs when there is no temperature gradient across the walk

Toutside = xnside - (VIII-24)

Insulated boundaries are contrasted with prescribed boundary conditions, which were

used in the one-dimensional heat flow problem. For this condition the temperature gradient

across the wall is chosen such that the temperature at the wall is a constant:

Toutside 2Twal1 - xnside * (VIII-25)

Together these two boundary conditions may be used, for example, to create a system

that is insulated on three walls and a portion of the fourth one but contains a HOT SPOT

which uses prescribed boundary conditions. This system would appear as in Fig. VIII-9.

Ins Prescribed Ins
(Tout = 2 Twa~ - Tin)

Figure VIII-9

145

Each of these sections of wall is described by assigning Tout values to the appropriate arrays

in the system. For example, a procedure that implements insulated boundary conditions

along the top wall, the sides, and the left half of the bottom wall, and implements prescribed

boundary conditions at the right half of the bottom, appearrs as follows:

c.. insulated sides

do 100 j =l,jbar

T(O,j) = T(1,j)

T(ibar+l,j) = T(ibar,j)

100 continue

c.. insulated top and bottom

do 200 i =l,ibarr

T(i,O) = T(i,l)

T(i,jbarr+l) = T(i,jbar)

200 continue

c.. hot spot

do 300 i = ibar/2,ibar

T(i,O) = 2"TwaJ.l - T(i,l)

300 continue

With these three major elements: the calculation of the heat transfer equation, the

use of a buoyancy term from the Boussinesq approximation, and the implementation

of insulated and prescribed temperature boundary conditions, heat transfer in a two-

dimensional incompressible fluid can be modeled computationally. A diagram illustrating

the interactions of these three elements appears below:

146

A Initial B.C.

Output k End
I

I
pt =ptime

I I

Dmax < Dtest

Figure VIII-10

C. Convection Calculations

Our two-dimensional fluid code that includes a heat transfer model can be used

to study the phenomenon of NATURAL CONVECTION. Natural convection is the

circulating motion of fluid between regions of different temperatures due to the difference

in the fluid density at each of these temperatures. It can be described by using the example

of an initially cold room in which a heat source is placed in one corner. The heat source

heats the air around it, consequently reducing the density of that air. The heated air then

moves upwards and across the ceiling, where it is cooled back to its original temperature.

Once again dense, the cool air moves down towards the floor as new heated air flows up

from the heat source. Finally, the dense air finds it way back to the heat source, and the

cycle is repeated. This cycle is illustrated in Fig. VIII-11.

147

I
gas moves across

ceiling and is cooled

cool gas
moves

downward

1
gas moves across

floor and is again heated I
Figure VIII-11

Using our two-dimensional fluid code with heat, we can generate results that

demonstrate this process. Figures VIII-12, 13, 14, and 15 are plots of streamlines of a

fluid experiencing natural convection. These plots use the following set of parameters: TO

= 0 ("C) ibar = 15, jbar = 15, xlen = 3 (m), ylen = 3 (m), mu = 1 xlO-* (m2/s). All

ghost zones use insulated boundary conditions except zones 1-7 on the bottom wall, where

the wall is set to a prescribed temperature of 100°C.

148

Streamlines at time 5 (s)
Figure VIII-12

Streamlines at time 20 (s)
Figure VIII-13

I

Streamlines at time 40 (s)
Figure VIII-14

Streamlines at time 60 (s)

Figure VIII-15

149

Figures VIII-16 through VIII-19 are contour plots of temperature in this fluid at times

of 5 , 20 40, and 60 seconds. These plots illustrate the flow of heat from the hot spot.

Temperatures at time 5 (s)

Figure VIII-16

Temperatures at time 20 (s)

Figure VIII-17

Temperatures at time 40 (s)

Figure VIII-18

Temperatures at time 60 (s)

Figure VIII-19

In a fluid in which natural convection occurs, the rate of heat flow is greater than that

of a fluid that is not in motion, because heat is not only being conducted but advected by

the circular motion of fluid. A ratio can be formed between the total heat flux in a system

and the heat flux due only to convection, such that

(VIII-26) Total
Conductive Flux ’ Nu =

where Nu is a dimensionless quantity called the NUSSELT NUMBER.

An example of a system for which the Nusselt number is often calculated is the

BENARD PROBLEM. This system is made up of a long, narrow flow passage that is

150

heated at the bottom, cooled at the top, and insulated along each side, as illustrated in

Fig. VIII-20.

cooled

insulated insulated

heated

Figure VIII-20

Parameters are variable, such that the Nusselt number in this system can be observed

at different RAYLEIGH NUMBERS. The Rayleigh number relates the magnitudes of the

buoyancy and viscous forces in a system. In the Benard problem, the Rayleigh number is

calculated as:

-gh3/3AT Ra =
UO

J (VIII-27)

where g is the acceleration of gravity (defined as negative if downward), h is the height

of the passage, AT is the difference in temperatures between the top and the bottom of

the passage, u is the viscosity of the fluid, o is the themometric conductivity of the fluid,

and p is the volumetric coefficient of expansion, which for gases is the reciprocal of the

reference temperature (k).
The equation for the computational calculation of the Nusselt number can be derived

by examining the conductive and actual heat fluxes. In this system, the conductive heat

flux is calculated by Fick's Law, expressed in terms of themometric conductivity:

(VIII-28)

151

where p is the density and b is the specific heat of the fluid. The actual flux of heat across

a given plane existing at a vertical position of j + 1/2 is made up of both conductive and

advective fluxes. This flux appears as

Actual Flux = p b

These equations can be substituted into Eq. (VIII-26) to obtain

which reduces to:

Nu =

(VIII-29)

(VIII-30)

(VIII-3 1)

If we choose to compute the Nusselt number at the bottom and top of the system,

then we have no advective flux, and our equation becomes
-
i

- Tbot - q,1
2 Tbot - Ttop

2 j i=l
N U b o t = 7

and

(VIII-32)

(VIII-33)

When both of these numbers have equal values, heat flow into L e system from the bottom

is equal to heat flow out of the system through the top, and the system has reached a

steady state.

A routine to compute Nusselt numbers can be added to the output portion of our

program. The code should be similar to the following:

152

ttot = 0.

btot = 0.

do 100 i=2,ibar+l

ttot = ttot - (tTmp-T(i,jbar+l))

btot = btot + (bTmpT(i,2))

100 continue

nm = (2*jbar*dx) /(den* (bTmptTmp))

tnuss = ttot*nm

bnuss = btot*nm

Using this routine, we can calculate the Nusselt number at the top and bottom in

systems with various Rayleigh numbers. The next set of graphs are of a system with the

following parameters: ibar = 40, jbar=8, xlen = 5 (m), ylen = l(m), g = -10 (m/s2),
sigma = 0.01 (m 2 2 /s), anu = 0.01 (m2/s2), beta = 1/300 (l/"C), Ttop = 0 ("C). These

parameters correspond to a Rayleigh number that is equal to the Tbottom x 333. At a

temperature of 1"C, the top and bottom Nusselt numbers converge to 1 & is shown in the

following graph:

Nusselt numbers
Rayleigh number = 333

Figure VIII-21

153

In this system, heat transfer is purely by conduction.

At a bottom temperature of 5"C, the top and bottom Nusselt numbers converge at

a value of 2.33, indicating that the system has become more convective in nature. This

system is illustrated in Fig. VIII-22.

':I \I----
?
D

h t I I , I I I
91.0 4 0 . 0 5 0 . ~ mn rao c n o 90.0 wnn uno

'3LW t a l

Nusselt numbers
Rayleigh number = 1665

Figure VIII-22

Flow at this Rayleigh number appears as is shown in Fig. VIII-23.

Streamlines at time 10 (s)
Rayleigh number = 1665

Figure VIII-23

154

Heat contours appear in Fig. VIII-24.

/ \ \

Heat Contours at time IO (s)
Rayleigh number = 1665

Figure VIII-24

At higher Rayleigh numbers, such as 2 x lo4, corresponding with a temperature

gradient of 67"C, the Nusselt number is even higher, but the Courant instability begins to

affect the calculation of these values, as c m be seen in Fig. VIII-25

Nusselt numbers
Rayleigh number = 2 x 1 O4

Figure VIII-25

155

Despite the presence of this instability, it is possible to use our code to calculate

Nusselt numbers at different Rayleigh numbers to within a reasonable degree of accuracy.

The data from one such study appears below:

-

Tbot
.5
1
3
4
5

10
33
67

333
1000

.................................... - - - -
-
-
-
-

n m
v w

Nu
1.00
1.00
1.01
1.40
2.33
3.03
3.92
5.25
7.00
8.50

Ra
167
333

1000
1332
1665
3330
104

2 x 104
105

3.33 x 105

If we compare these Nusselt numbers with numbers that have been generated from

numerous different experiments, we see that our computational values are very similar,

as can be seen in Fig. VIII-26. The experimental data for this graph is taken from S.

Chandrasekarr, Hydrodynamic and Hydromagnetic Stability (Dover, New York 1961).

Computational and Experimental
Nusselt Numbers

Rayleigh Number

Figure VIII-26

156

In this graph, computational Nusselt numbers are plotted as circles and are connected

with a dotted line. Experimental values appeaz as a solid line. Discrepancies between

computational results and experimental results are most likely due to the coarseness of the

mesh used in these simulations and the fact that our mesh is two-dimensional whereas the

laboratory flow passage exists in three dimensions.

D. Two-Dimensional Compressible Flow

Our last topic in this chapter of additions to a two-dimensional Eulerian code is more

an extension of previous concepts than an addition of a new element to an already existing

code. An Eulerian two-dimensional compressible code is based on the same Navier-Stokes

compressible flow equations that were used in the one-dimensional Eulerian code, but

extended to two dimensions. In the one-dimensional code the equations were

apu+apu2 dP +-=O - -
at ax ax

a p ~ apuI pau
ax +-- - 0 . -+- at ax

In two-dimensions the system of equations becomes

-+- dP apu+aPv - = o
at ax ay

apu apu2 apuv aP -+-+-+-=o
at ax ay ax

apv apuv apv2 aP -+-+-+-=o
at ax aY dY

au a v -+-+- a d + p (ax I ay) =0, at ax dY

(V-37)

(V-58)

(V-59)

(VIE-34)

(VIII-35)

(VIII-36)

(VIII-37)

where P signifies total pressure (p + q) rather than pressure per unit density. Note that

the momentum equation becomes two equations when extended to two dimensions.

157

These equations are implemented in two dimensions much as they were in one. Six

two-dimensional arrays are created: u, v, rho, sie, p, and q. These are located as in

Fig. VIII-27.

V
rn -

sie p
rho’ q a u

Figure VIII-27

These arrays are initialized to their desired values in an initialization routine. This routine

also sets time counters as was done in previous programs.

Boundary conditions are set such that each wall of the system acts in one of three

ways: as a rigid wall, a specified boundary, or an outflow boundary. Rigid walls are

represented by setting a normal velocity of zero in all cells along the desired boundary.

Specified boundaries are created by setting the normal velocity to some specified value as

well as supplying sie and rho values for this flow. These values can be set according to the

infinitestrength shock equations,

and

(Iv-45)

(V-61)

set to the same values as the initial rho’s and sic% in the mesh, or set to some other values,

such as those present in a rarefaction wave. Outflow boundaries are created by setting

the velocities normal to a wall equal to the normal velocities directly before the wall

158

(e.g., u(ibarj) = u(ibar-1,j)). It is neither necessary nor desirable for outflow boundaries

to be calculated as they were in the two-dimensional incompressible case, because in the

compressible case, the amount of mass in the system is not a constant. Tangential boundary

conditions are not necessary for the case in which the viscosity does not include shear

stresses.

Obstacles can be included in a two-dimensional compressible code by using the same

process that was discussed in Section A of this chapter. Once again, it is not necessary

that tangential boundary conditions be included.

The two-dimensional Eulerian compressible transport equations are calculated sim-

ilarly to those of the one-dimensional Eulerian code. This calculation is done explicitly

with a routine that first calculates mass density, momentum density, and internal energy

density and then uses these values to determine new values of rho, sie, u, v, p, and q. The

equations that determine the new densities are fhite-difFerence versions of Eqs. (VIII-34)

through (VIII-37). These appear as

(VIII-39)

(VIII-40)

159

J

(VIII-41)

where the bold terms are donor-cell terms, which can be calculated using either a series of

if/then checks or a doublelookup technique.

If a doublelookup technique is used, integer arrays of ones and zeros must be set for

six different circumstances: horizontal flux at right cell walls, vertical flux at cell tops,

horizontal flux and vertical flux at cell centers, and horizontal and vertical flux at cell

corners. These six different locations are illustrated in Fig. (VIII-28).

1
4 6

4
* I 1

Figure VIII-28

5 ,
i+ 1/2, j+ 1/2

3

i+ 1/2, j
2

Six arrays must therefore be defined for each of the six types of advective fluxes. We

then have: idnr and jdnr, which represent fluxes in the i and j directions at the cell centers

160

(1 and 2 in the previous figure); idnrw, which represent flux across the right cell wall (3);

jdnrw, which represents flux across the top of the cell (4); and idnrc and jdrnc, which

represent fluxes in the i- and j-directions at the cell corners (5 and 6). These donor-cell

arrays are calculated each time cycle and are used in the advective terms of the transport

equations according to the position and direction of the flux that is being represented.

After quantity densities are calculated using either a series of if/then statements or

a doublelookup technique, rho, sie, u, v are determined by setting the arrays equal to

the appropriate density arrays divided by the mass densities, if necessary. Then p and q

are determined fiom these arrays. In two dimensions the pressure equation is the same

polytropic equation of state,

p7 = (y - 1)pp-r ; (W-23)

but the q equation is modified to respond to velocities in both the i- md j-directions. The

two-dimensional q equation is

or if negative qcj = 0 . (VIII-42)

Note that if d y is equal to dx and there is no vertical motion of the fluid, this equation is

identical to the one-dimensional q equation.

The output routine for a two-dimensional flow code can contain contour plots of

density, internal energy, pressure, and viscous pressure. Streamlines are rarely used in the

compressible case, however, because the divergence of the velocity is not equal to zero, and

therefore Eq (WI-88) is not valid.

The sections in this program interact in much the same way as did the sections in

the two-dimensional incompressible fluid code. The twdimensional compressible code is

structured as is illustrated in Fig. VIII-29.

161

+,
Initial B.C.

st =slime
End f-- output Tests

p t =ptime

Outflow B.C. P +
Obstacle 1

Obstacle 2

T

Obstacle n

Explicit

Figure VIII-29

E. Results of Two-Dimensional Compressible Flow

Using our two-dimensional compressible flow code, we can model a number of different

problems. One simple problem that can be simulated is the piston problem that was

discussed in Chapters IV and V. By specifying parameters such that there is variation of

flow parameters in a single direction, our two-dimensional code can be used to obtain the

same type of results we saw in our one-dimensional simulations. In fact, if they are set

to the same parameters, both the two-dimensional code and the one-dimensional Eulerian

compressible code should yield exactly the same results. Comparing these two codes is a

good method for removing errors from the two-dimensional code.

162

The two-dimensional code can also extend the piston problem, such that the shock is

moving down a flow passage with an obstacle in it. The following set of plots show the

effect of an idk i te strength shock moving down such a passage. Parameters are den= 30

(cm), ylen = 10 (cm), ibar = 75, jbar = 25, iobl = 21, iobr = 25, jobb = 1, jobt = 5, rho0

= 1 (&), sieO = 0, gamma = 5/3, dt = .l(s), and ul = 1 (cm/s); rho’s and sie’s at the

input boundary are defined using the equations of infinite strength shocks.

Densities at time 10 (s)

Figure VIII-30

Internal Energies at time 10 (s)

Figure VIII-31

163

Pressures at time 10 (s)

Figure WII-32

Notice that while the upper portion of this shock is passing over the obstacle, the bottom

portion of the shock is being reflected back towards the front of the flow passage. This

reflected shock becomes further detached as time progresses, as can be seen in the following

pressure plot.

Pressures at time 20 (s)

Figure VIII-33

In this plot we see that the reflected shock has moved upwards towards the top of the

passage and leftwards towards the inlet. The shock is reflected off the top of the passage,

and the shock and its reflection form a MACH STEM which will close off the incoming

flow, choking the channel. A Mach stem is a shock that is formed between a shock that

164

hits a wall and the resulting reflected shock. A Mach stem is always perpendicular to the

wall. It is illustrated in the following figure.

1 shock

Figure VIII-34

The formation of a Mach stem is dependent on the angle at which the shock hits the top

of the flow passage. Experiments have found that if the shock reaches the top wall at an

angle of less than about 40 degrees, it will form a reflected shock but not a Mach stem and

will eventually reach a steady state. If the shock reaches the wall at an angle greater than

about 40 degrees; however, a Mach stem will form. In our plots we can scarcely see the

Mach stem due to the coarseness of resolution; we can, however, see its effect of choking

off the channel as is shown by the contour lines above the obstacle in the next figure.

Pressures at time 40 (s)

Figure VIII-35

165

A reflected shock that does not form a Mach stem can be generated by m o w i n g our

program such that we are no longer dealing with an reflected inhi te strength shock moving

over a stationary obstacle. Instead, we simulate the problem of an obstacle creating a shock

as it moves through stationaq flow. This simulation is done by setting the velocities,

densities, and internal energies of the internal zones equal to the input values, as if one is

traveling in the reference frame of the obstacle.

Setting up the code in this way allows us to examine flows at ‘high MACH NUMBERS.

The Mach number is the ratio of the velocity of a shock to the sound speed ahead of that

shock
V

Gound
M G - .

The lower the Mach number, the less intense the shock.

We can create shocks at any specified Mach number by using our equation for the

sound speed,

If we substitute this value into our definition of M, we obtain

Solving for I , this becomes

(N-26)

(VIII-43)

(VIII-44)

In the idkitestrength shock problem, input 1 ’s were defined as id2, causing the

. In the moving obstacle case; Mach number of the flow to have a maximum of

however, I can be defined at any specified value, allowing for flows of any Mach number

to be examined. For example by using Eq. (VIII-44), we can create a system with a Mach

number of 10 by specifying an initial internal energy of 0.009 cm2/s2. Input rho’s and

sie’s are set to rho0 and sieO respectively, and initial velocities are set equal to the input

velocity at the left. These parameters correspond to the simulation of an obstacle that is

moving to the left. The results of this simulation appear in Figs. VIII-36 through VIII-41.

d&

166

Densities at time 10 (s)

Figure VIII-36

internal Energies at time 10 (s)

Figure VIII-37

Pressures at time 10 (s)

Figure VIII-38

167

Note that the shock formed in front of the obstacle is more swept back than the lower

Mach number shock (see Figs. VIII-30 though VIII-32). This shock hits the top wall at

angle less than 40 degrees and hence does not choke the channel. Instead it is reflected off

the top wall and reaches a steady state. This reflection can be seen in the following three

plots of pressure:

Pressures at time 20 (s)

Figure VIII-39

Pressures at time 40 (s)

Figure VIII-40

168

Pressures at time 100 (s)

Figure VIII-41

Note that the slight upward turn of the shock in the region near to ,he wall is an effect of

the approximation of the actual shock by finite zones.

Another problem that can be modeled using a two-dimensional compressible flow code

is the wedge problem, in which a shock passes over a wedge of a specsed angle and the

angle at which the shock reflects is measured. For this problem the difference between the

angle of the shock and the wedge can be determined using the following equation, which

can be found in LA-4700:

(VIII-45)

where 8 is the angle of the shock, Q! is the angle of the wedge, and MO is the Mach number

of incoming flow. We can create a wedge of this type by making multiple calls to the

object routine and stacking these objects in a triangle shape. These following set of figure

are of a system with the parameters den= 5 (cm), ylen = 5 (cm), ibar = 50, jbar = 50,

Mo = 10, and with a wedge that begins in zone 11 and goes to the end of the mesh, ending

at a height of 20 zones, and corresponding to an angle of 27 degrees. Figure VIII-42 is a

contour plot of pressures in this system at a time of 50 seconds.

169

Pressures at time 50 (s)

Figure VIII-42

In this set of circumstances the predicted angle of reflection is approximately 38 degrees.

This angle is extremely close to the computationally calculated angle of 37 degrees.

If we now use the same set of parameters but for a wedge with a height of 10 zones

(corresponding to an angle of 14 degrees), we obtain the following results. Again a contour

plot of pressures is displayed.

170

Pressures at time 50 (s)

Figure VIII-43

For this set of circumstances, the analytical solution predicts an angle of 19 degrees whereas

the computational solution yields an angle of approximately 21 degrees.

- In this chapter, we examined three different modifications that can be made to a two-

dimensional incompressible Eulerian flow code and discussed some additional problems

that can be modeled with codes that include these modifications. In the next chapter,

we will again be making an addition to our compressible fluid code, but this additional

element will be different from the ones discussed in this chapter. Up to now, our equations

have followed directly from mathematical manipulation of equations derived from basic

physical principles, but this will not be the case in the next chapter. Instead, a complex

mathematical model will be constructed to successfully approximate rigorously derived

equations that are not able to be directly computed. Our turbulence transport equations

will contain many of the properties, but will not directly represent, the computational

calculation of the miniature fluctuations that are present in fluid flow of sufficiently high

Reynolds number.

171

IX. TURBULENCE TRANSPORT

A. Tensor Notation

Before we discuss the equations of turbulence transport, it will be helpful to first

examine a shorthand notation that can be used to express them. One such notation,

CARTESIAN TENSOR NOTATION, is based on the idea that a system will act in the

same manner regardless of the coordinates that are chosen to describe it. We can see

this property in the momentum equations (VII-34 and VII-35), where an equation that

expressed motion in the x-direction is coupled with a similar equation for motion in the

y-direction; Eq. (VII-35) is simply Eq. (VII-34) with the x’s exchanged with the y’s and the

u’s exchanged with the v’s. This same concept is also present in the heat equation, where

the advective and viscous terms are symmetric with respect to the x- and y-directions.

Cartesian tensor notation makes use of subscripts to express the general directionality

of a quantity without explicitly stating that it is in a particular x-, y-, or z-direction.

This concept can be demonstrated by an example such as the two-dimensional heat-flow

equation. In partial differential form, the heat-flow equation is Eq. (VIII-5):

dT auT avT d2T d2T -+-
Each of the u, 21, x, and y terms in this equation is in reality a component of a vector,

(VIII-5)

associated with either the x- or y-direction. If we let the symbol x represent a scalar (i.e.,

no direction) length and u represent a scalar speed, we can represent lengths and velocities

in definite directions with subscripts. Lengths and velocities in the x-direction become x,

and u,, and lengths and velocities in the y-direction become x, and u,. Equation (VIII-5)

would then appear as follows:

If we further replace u, with u1, u, with u2, x, with XI, and x, with x2, the equation

becomes

172

From this form, our equation can be rewritten using general subscripts (i, j, etc.) rather

than specific numbered directions. This rewriting is done using the two major rules that

govern equations written in Cartesian tensor notation.

The first of these rules is that any repeated index indicates the sum of d the elements

in each of the available dimensions. For a three-dimensional system for example:

This rule allows us to condense combinations of terms such as + into a single
ax2

dU.T term, =’
The second rule of Cartesian tensor notation is that any “free” (i-e., not repeated)

index in one term must be the same in every other term. For example, in two dimensions,

would become two equations:

This rule of consistency of free indices coupled with the summation rule for repeated

indices forms the basis of Cartesian tensor notation. We can use this notation to express

Eq. (IX-2) a~ follows:

In a similar manner, both momentum equations,

a2u a2u
- ap ax .; v (- ax2 + -) ay2

du au2 auv
at ax a y

+---- -+-
and

-++++=-- av auv av2 “+v(-+-) d2v a2v 7

at ax a y aY ax2 ay2

(VII-34)

(VTI-35)

173

can be written as one equation:

(IX-8)

Notice that in each of these tensor equations [Eqs. (IX-7) and (E-S)], all the terms have

the same number of free indices.

Equation (IX-7) has no free indices in any of its terms; it is made up of scalars.

Such a scalar equation can be said to be made up of terms of TENSOR ORDER zero.

Equation (E-8): on the other hand, has one free index in each of its terms and therefore

is made up of vectors, or first-order tensors. As the number of free indices increases in an

equation, its tensor order similarly increases. Tensors of any order may exist, but all the

terms of a given equation must be of the same order.

Cartesian tensor notation will be useful when discussing the equations of turbulence

transport. It greatly increases the clarity of these equations and simplifies the notation in

the complex derivations that are used to generate turbulencetransport models.

B. Turbulence Transport and K - E Models

Before we examine the equations of turbulence transport, we must first define what

we mean by turbulence. Any flow can be divided into steady and fluctuating parts. For

our purposes, we will define TURBULENCE as the fluctuating part of that flow. The

underlying average velocities over which these turbulent fluctuations exist will be called

the MEAN FLOW.

Precisely what we define to be the mean flow and what we consider to be turbulence

is a matter of choice. In the Karman vortex street problem, for example, there exists

at low viscosities a fluctuating stream moving to the right. This rightward flow could be

considered the mean flow, whereas the up-and-down oscillations could be called turbulence.

But another definition could be chosen: both the rightward velocity and the up-and-down

motion could be considered part of the mean flow, whereas the miniature fluctuations that

are present within the up-and-down stream could be labeled as turbulence. Both of these

174

definitions are valid. Flow is divided into mean flow and turbulence, and the threshold

between these two types of flow is set at any arbitrary resolution.

In our simulations of turbulence, we will consider this threshold to be at the level of

resolution of the mesh. Flow that can be resolved through the use of u’s and v’s will be

mean flow, and fluctuations that are smaller than the area of a cell will be considered to be

turbulence. In principle, however, our turbulence equations can resolve fluctuations even

greater than the resolution of the mesh. Although this is rarely desired, it is interesting

to note that turbulence equations can be used to represent fluctuations at any scale.

Our turbulence model will not resolve the turbulent fluctuations themselves but rather

the T U B U L E N T KINETIC ENERGY per unit mass, the amount of kinetic energy per

unit mass present in the turbulent fluctuations. This two-dimensional array will be deflned

at the cell centers and designated by a K. A variable, E, will also be calculated over the

mesh to represent the rate of dissipation of turbulent kinetic energy in different subregions

in the fluid. The resulting placement of variables on the mesh appeaxs below:

Figure E-1

The method of simulating turbulence that makw use of these variables is known as the

K - E TURBULENCE MODEL, named after the two variables in its transport equations.

In order to derive an expression for the effect of K and E on the transport of

momentum, we begin with the momentum equation as expressed in tensor form (E-8).

175

Each velocity and pressure in this equation is made up of a mean value and a fluctuating

I
value:

ui iii + ui

where iii and P represent the average parts, and ui and P’ represent the fluctuating parts

of U i and P. Substituting these definitions into Eq. (E-8) gives us

or

Because the turbulent fluctuations are symmetric about the mean flow, the time averages

of the fluctuations (E: , E:, PI) are equal to zero. Therefore, all terms that contain a single

fluctuating factor are also equal to zero when averaged, and the time average of Eq. (IX-10)

can be written a s

(Ix-11)

This equation is almost identical to the original momentum equation, (E-8) but contains

an additional term. While u$ and u: are both equal to zero when averaged over time, the

time average of their product (u;u>) is not equal to zero, resulting in the e term in

Eq. (E-11). (s) is called the REYNOLDS STRESS TENSOR, abbreviated as R&j.

This second-order tensor represents the effect of turbulence on the mean flow.

- - au! u‘.

Computationally, this tensor is approximated by calculating a turbulent viscosity that

is added to the molecular viscosity to represent the total viscous forces on the fluid. TO

make this approximation, we substitute the variable &¶j for (uiu;). Equation (IX-11)

becomes

-

176

(E-12)

which is a somewhat limited case of the fluid-flow equation. It is valid only when u is a

constant and the fluid is incompressible. This equation is more properly written as

Using this general equation, we then make the approximation that

(E-13)

(E-14)

where ut is the TURBULENT VISCOSITY, a viscosity that results from the presence of

turbulence in the system, K is the turbulent kinetic energy, and &,j is the KRONECKER

SYMBOL which is one if i equals j, and zero otherwise. The MODELING of &,j in this

manner is a somewhat arbitrary decision. It is made because more rigorous representations

of this tensor are unnecessary for the accuracy to which we desire a solution. This

representation is chosen because it has the correct dimensions, is of the right tensor order,

and has been experimentally demonstrated to be reasonably accurate. This model is known

as the BOUSSINESQ APPROXIMATION for the Reynolds stress tensor. It is not to be

confused with the Boussinesq approximation for the momentum equation.

Because the Si,j term is absorbed in the pressure term, the Boussinesq approximation

allows us to rewrite Eq. (E-13) as

(E-15)

We calculate ut by using the variables K and E. In this equation K , the turbulent kinetic

energy, has units of energy per unit mass: &$T. E is the rate of dissipation of K , and its

units are those of energy per unit mass per unit tiine: ~&. Because viscosity has units

of e, turbulent viscosity can be synthesized dimensionally as

len h2

len h2

en h2

K 2 G/- ,
E

177

where C, is a constant that has been experimentally determined to be about 0.09. Our

equation for ut at a point (i , j) on the mesh is then

Kt j
Vt(i , j) = 0.09- .

E i , j
(IX-16)

Having related K and E to the momentum equation, we must also derive transport

equations for these two quantities. K is calculated by relating it to the Reynolds stress

tensor, and using the classical equation for kinetic energy:

(E-17)

Turbulent kinetic energy, which is expressed as kinetic energy per unit mass, is then

which can also be written as
1 K = -&,i.
2

(E-18)

(E-19)

Using this equation for K in terms of the Reynolds tensor, we calculate K by first deriving

an equation for &,j.

This derivation will not be carried out in detail in this work, but a short overview

is included to give some insight into the process: First, Eq. (E-9) is multiplied by u$

to obtain an equation in terms of uj*. Then Eq. (IX-9) is written in terms of u$ and

multiplied by u; to obtain an equation in terms of u;%. These two equations axe added

and averaged to obtain an equation in terms of ~ $ 2 + u;-$. In this step, all equations

containing a single fluctuating term become zero. Then, by the chain rule [Eq. (VII-

53)], u i s + u i 2 becomes +, which is the time derivative of the Reynolds stress

tensor, +. This equation is contracted to be in terms of &,i and divided by two. One

is then left with a transport equation for K which contains some terms that carnnot be

I au'-

-- ad.

- au!ui.

bR. .

computationally represented using only K and E . These terms are then modeled, resulting

in a fkal equation for the transport of K:

178

In this equation the term denoted by I represents the time rate of change of K, 11 represents

advection, 111 represents diffusion of turbulent energy, IV represents the generation of

turbulence by SHEAR FORCES (forces similar to friction that are caused by flows at

different velocities rubbing against each other), and V (E) represents the dissipation of

turbulence.

A transport equation for E is “derived” by modeling an equation after the transport

equation for K. The e transport equation is

I ~ I IV (E-21)

where a,, C E ~ , C,2 are constants which have been determined as a result of experimentation.

Typically,
0, M 1.3

C,l M 1.55

c,2 x 2.0 .
Equation (E-Zl), like Eq. (IX-20) is made up of a rate of change term (I) , an advection

term (11), a diffusion term (111), a generation term (IV) , and a dissipation or dampening

term (V).

These two transport equations [Eqs. (IX-20) and (IX-Zl)] , combined with the equation

for turbulence viscosity [Eq. (lX16)] make up the K - E turbulence model. We will

employ this model in a two-dimensional fluid-flow code to compute turbulence transport

comput ationally.

C. Computational Implementation of the K - E Turbulence-3kansport Model

The K - E turbulence model is implemented by creating two new arrays: K and eps.

The values of these arrays are speczed at cell centers as is illustrated in Fig. E-1 in

Section B. Both two-dimensional arrays are initialized in the setup procedure. A typical

179

initial value for K is one-tenth of the energy per mass of the mean flow. In the Karman

vortex street problem, for example, initial K’s might be assigned such that

KO = (A) (id2) . (E-22)

A typical value of eps0, the initial value of the eps array, is K3/2 divided by some

characteristic size of the turbulence of the system. For the Karman vortex problem, a

typical turbulence size is half the width of the obstacle. For this problem, the E array is

then initialized to

(E-23)

In addition to these two arrays, three other arrays are created for the turbulence viscosity

at the cell centers, the top of the cells, and the right cell walls. These are configured as in

Fig. IX-2.

0
anuK

Figure IX-2

These arrays need not be initialized because they- will be calculated before they are ever

used in the program.

The u, v, ubar, vbar, and pressure arrays are implemented as they were in our

other two-dimensional simulations with the exception of the total viscosity (molecular

180

plus turbulent) being used rather than simply the molecular viscosity. Our turbulence

transport code will not contain a temperature m a y or equations of heat transport.

Besides the initialization of the K and eps mays in the setup procedure, our turbulence

t rmpor t code contains three major sections that did not exist in the basic two-dimensional

incompressible code: the implementation of turbulent boundary conditions, the calculation

of turbulent viscosities, and the calculation of the K and E equations themselves. The

resulting code is structured as in Fig E-3.

Start

+l Initial B.C.

st = stim
output Tests

1

iC1 Outflow B.C.

End I

Figure E - 3

The turbulence boundary conditions will be reflective, with the values of K and eps at

the ghost zones equal to the values at the real zones directly adjacent to them. This

method is only an approximation of the true effect of a wall on the turbulence in a

181

system. Much more accurate boundary conditions exist, using WALL FUNCTIONS, that

carefully calculate more appropriate values for the ghost zones. Even these functions have

their limitations, however; and for turbulence to be completely modeled at a wall, each

component of the Reynolds stress tensor must be calculated separately rather than the

overall turbulent kinetic energy (K). Because our simulation is not overly concerned with

turbulence at the walls of the system, neither of these methods is necessary. A simple

reflective condition where

Kghost = Krea l

and

€ghost = ‘%ea1

(E-24)

(E-25)

will prove sufficiently accurate for our immediate purposes. Two loops that canry out

these calculations along the top and bottom and along the edges of the mesh comprise the

turbulent boundary condition routine.

The routine to compute the total viscosities assigns values to the three turbulence

viscosity arrays (anuk, anuki, and anukj) by using K and eps values at the desired positions

to calculate ut as in Eq. (IX-16) and adding the molecular viscosity. K’s and E’ s at cell

walls are calculated by averaging. The three equations for the total viscosities are

3

Kz:j
(andS)i,j = - + Vmolecular

ci,j
(IX-26)

(E-27)

(IX-28)

These should be carried out every time step, just before the program enters the routine

for turbulence transport.

182

The turbulence transport equations are calculated by computing Eqs. (E-20) and (E -

21) at every point on the mesh. For this calculation local arrays of variables are employed

to represent each term in the equations. Equations (M-20) and (IX-21) are then written

as

(E-29) dK - = -Ktl + Kt2 + Kt3 - E at
and

dE - = -dl + d2 + d 3 - d 4 , at (M-30)

where Ktl -, aKW K t 2 ~ d axk ((v + v t) E) , K t 3 = (v + v t) (% + %) % , d l = h axi '
E2 and d 4 E CE2w. u+ut aK

K and E are calculated using the finitedifference versions of Eqs. (E-29) and (E-30):

w ~ c h leaves us the issue of how each of the terms in these equations is calculated.

The advective terms in these equations (Kt l and dl) are calculated by first computing

donor-cell arrays as was done in the two-dimensional heat-flow equation: Two arrays, idnr

and jdnr , are calculated. idnr is calculated from the u velocities at position i + 1/2, j

and is zero if the flow is from left to right and one if the flow is from right to left. j d n r

is calculated from the v velocities at position i, j + 1/2 and is zero if the flow is upwards

and one if the flow is downwards. These two arrays are used to calculate donor cell in a

double-lookup fashion.

In finite-dif€erence form Ktl and dl are

(E-33)

and

183

where each K and E at a cell wall is calculated using the donor-cell technique. In code form

these equations appear as

Kt 1 (i,j) =(u(i,j) *K(i+idnr (i,j) ,j) -

& u(i- 1 j) *K (i-l+idnr(i-l ,j) ,j))/dx +
& (v(ij>*K(i,j+jdnr(i,j)) -

& v(i-1,j)*K(i7j-l+jdnr(i-17j))/dy

Epstl(i,j) =(u(ij)*Eps(i+idnr(i,j)j) -

& u(i- 1 ,j) *Eps(i- l+idnr (i- 1 ,j) ,j)) /dx +
& (v(i,j)*Eps(i,j+jdnr(i,j)) -
& v(i-l,j)*Eps(i,j-l+jdnr(i-1,j))/dy

Kt2 and et2 are written in finite-difference form as

1 - (Y + Y t (i , j + l / 2)) (Ei,j+l - E i , j) - (Y + Yt (i , j -1 /2)) k i , j - %-d
dY

In code form, this equation is written as follows:

Kt2(i,j)=((anuki(i,j)*(K(i+l,j)-K(i,j))

& + anuki(i-1 ,j)* (K(i-1 ,j)-K(i,j)))/ (dx*dx))

& + ((anukj(i,j)*(K(ij+l)-K(i,j))
& + anukj(ij-l)*(K(ij-l)-K(ij)))/(dy*dy))

Epst2(i7j)=((anuki(i,j)*(Eps(i+l,j)-Eps(i,j))

& + anuki(i- 1 ,j) * (Eps(i- 1 j)-Eps (i,j)))/ (dx*dx))

& + ((anukj(i,j)*(Eps(i,j+l)-Eps(i,j))
& + anukj(i,j-l)*(Eps(ij-1)-Eps(i,j)))/(dy*dy))

184

(Ix-35)

(IX-36)

& * (l/sige)

Kt3 is calculated by first expanding to obtain

This reduces to

au av
Kt3 = (V + Vt) [z + (ay + B)2 + 2 ($)2] .

(E-37)

(E-38)

In finite-difference form, this equation appears as

(E-39)

where u at i and v at j are the average of ui+1/2 and ui-112 and the average of ~ j + 1 / 2

and vj-1/2 respectively. Note that the middle term involves differences taken across a

distance of 2 dx and 2 ddy, due to the positions at which u and v are defined. In code form

Eq. (E-39) appears as the the following:

Kt3 (id) = anuK(i,j) * ((u(i j)-u(i- l j)) **2)/ (dx*dx) +
& ((v(i,j)-v(i,j-l))**2)/(dy*dy) +
& (((u(i,j+l)+u(i-~,j+l)-u(i,j-~)-u(i-~,j-~))/(4*dy)) +
& ((v(i+~,j)+v(i+~,j-~)-v(i-~,j)-v(i-~,j-~))/(~*~)))**~

et3 is calculated using Kt3, where

(IX-40)

In code form, this equation is

Epst3(i,j) = cel * (Eps(i,j)/K(ij)) * Kt3(i,j)

185

et4 is simply calculated as

(E-41)

or, in code form,

Epst4(i7j) = ce2 * Eps(i,j)*Eps(ij)/K(ij) .

This term is used along with the other E terms to calculate the array of turbulence

dissipation rates.

The turbulence transport routine is made up of three major loops: the first to calculate

donor-cell arrays; the second to calculate Ktl, Kt2, Kt3, Epstl, Epst2, Epst3, and Epst4;

and a third to combine these terms using Eqs. (IX-31) and (E-32).

This routine, along with the turbulent boundary condition routine and the routine to

calculate total viscosities, makes up the K - E turbulence model. The implementation of

these three procedures, along with the use of total viscosity wherever molecular viscosity

appears in the momentum and turbulence transport equations, is all that is necessary to

create a code that calculates turbulence transport.

D. Turbulence Transport and the Karman Vortex Street

Our incompressible code with equations of turbulence transport can be applied to the

Karman vortex street problem. In order to compare our results with those obtained in

Chapter VII, we can use the same set of parameters, namely: a flow passage 50 (cm) long

and 15 (cm) wide, flow around the obstacle at a rate of 1.5 (cm/s), an initial flow rate at

the right of 1 (cm/s), and a variable fluid viscosity.

The graphs presented in this section use these parameters on a grid of dimensions ibar

= 25 and jbar = 15. Initial K values and input K values are set to 0.01 (cm /s), whereas

initial and input E values are set such that the TUWULENCE SCALE is equal to 2 (cm).

The turbulence scale is a measure of the size of the turbulent fluctuations; it is represented

by an s and is calculated as

2 2

186

(IX-42)

A typical turbulence scale at low Reynolds numbers is about one to one half the size

of a major feature, such as the obstacle. At high Reynolds numbers the turbulence scale

is more on the order of one-fifth to one-tenth of the size of a major feature.

In this first set of graphs, stnu is set to 1; resulting in a system with a Reynolds number

of 5. Graphs appear at a time of 100 seconds.

Streamlines at time 100 (s)
Reynolds Number = 5

Figure IX-4

K contours at time 100 (s)
Reynolds Number = 5

Figure IX-5

187

Eps contours at time 100 (s)
Reynolds Number = 5

Figure IX-6

Notice that in these graphs, there is no flow separation, and turbulent fluctuations

are confined to the region where turbulence is being directly pumped into the system.

Turbulent kinetic energy cannot be sustained in this noductuating system and is therefore

dissipated.

- At a viscosity of 0.2, the system begins to develop stationary vortices as can be seen

in Fig. 7.

Streamlinesat time 1 00 (s)
Reynolds Number = 25

Figure IX-7

188

These vortices are better resolved in a run with a jbar of 30.

Streamlines at time 100 (s)
Reynolds Number = 25

Figure IX-8

K and E in a run using a jbar of 15 appear as follows.

K contours at time 100 (s)
Reynolds Number = 25

Figure IX-9

189

Eps contours at time 100 (s)
Reynolds Number = 25

Figure IX-10

Again we see turbulence energy being dissipated by the system. Turbulence energy is

much stronger where it is being pumped into the system than it is anywhere else. At this

Reynolds number, however, turbulence energy reaches an area farther downstream than

it did in the first example. The Reynolds number has not yet been increased to the level

that turbulence is being generated by the system, but it is now sufficiently high for the

input turbulence to persist for an extended period of time.

- At a viscosity of 0.02 and a Reynolds number of 250, the system develops a Karman

vortex street. This can be seen in the following two graphs taken at a time of 100 seconds.

Streamlines at time 100 (s)
Reynolds Number = 250

Figure IX-11

190

Streamlines at time 100 (s)
Reynolds Number = 250

Fluid Reference Frame

Figure IX-12

K and E at the same time appear as the following

K contours at time 100 (s)
Reynolds Number = 250

Figure IX-13

191

v-

Eps contours at time 100 (s)
Reynolds Number = 250

Figure IX-14

In these graphs, turbulence is once again strongest where it is being pumped in, but

shearing forces farther down the street have created other regions of turbulence. The

Reynolds number has been increased to a point where turbulence not only persists but is

generated by the system.

The Karman vortex street can be simulated in another manner, by setting the initial

K’s and the K at the left to a higher value and allowing for the turbulence equations to

represent not only the small fluctuations within the stream but the large changes in velocity

of the stream itself The system then evolves into a situation where the turbulence kinetic

energy is high, thereby resulting in a high-turbulence viscosity. This viscosity lowers the

EFFECTIVE REYNOLDS NUMBER of the system, the Reynolds number a s calculated

using the sum of the molecular and turbulence viscosities. The effective reynolds number is

in contrast to the MOLECULAR FtEYNOLDS NUMBER, which is calculated using only

the molecular viscosity. At a low effective Reynolds number, the resolved system does not

contained the Karman vortex street itself, but thekinetic energy contained in this stream

is visible in the turbulence kinetic energies. Such a system is shown in the following set of

plots, which are taken at a Reynolds number of 250 and an initial K and input K of 0.225
2 2 (cm I s 1.

192

Streamlines at time 100 (s)
Molecular Reynolds Number = 250

Figure IX-15

K contours at time 100 (s)
Molecular Reynolds Number = 250

Figure IX-16

i,

Eps contours at time 100 (s)
Molecular Reynolds Number = 250

Figure E-17

193

In these plots, K values are about 0.17 (cm2/s2) whereas E values are about 0.016

(cm2/s3). These values result in a turbulence viscosity of 0.16 (cm2/s), corresponding to

an effective Reynolds number of 30, which is consistent with the type of resolved flow that

can be seen in Fig. IX-15.

(I)
(I)

+ 0-
t
3

2 p’- .-
L 2-

It is hoped that the difference between the resolved kinetic energies in this and in

another calculation that has no equations of turbulence tramport will be comparable to

the turbulent kinetic energy. This hypothesis can be tested by recording the resolved

kinetic energy and turbulent energy per unit mass of a turbulence transport calculation

and the resolved kinetic energy per unit mass of the second calculation at equal time

intervals. The difference between the two resolved kinetic energies can then be compared

with the turbulence kinetic energy.

a , ’ > :

Figure 18 shows a comparison of these two values for the parameters used in Figs. IX-

15-17.

/- difference between runs

Comparisons of Fluctuating Energies

Figure IX-18

194

In this figure, we can see that the turbulent kinetic energy is in fact much less than the

difference between the two resolved kinetic energies. This difference is caused by the fact

that the turbulence equations are only able to model the fluctuations in the shear layer that

occurs behind the object. They are able to simulate the vortex street but underestimate

its effect in the top and bottom portions of the flow passage. In the resolved vortex street,

fluctuations in the center of the graph have large and immediate effects on the areas in

the top and bottom of the graph; these areas can be said to be CORRELATED. This

correlation, which can be clearly seen in Fig. IX-12, fails to be accurately represented by

the K - E turbulence model.

The problem is that the K - E model is a SINGLE POINT TUWULENCE MODEL,

meaning that it relies on the values of quantities directly surrounding a single point to

generate the turbulence values at that point. This type of model is in contrast with

the SPECTFtAL TURBULENCE MODELS that are presently being developed. Such

models establish correlations between different regions in a fluid and attempt to simulate

turbulence in a much more detailed and accurate manner. The development of spectral

turbulence models is one of the many areas in which research is being done in the field of

computational fluid dynamics.

In this book we have examined the basics of finitedifFerence methods for numerical

fluid dynamics. The equations that we have studied, the terminology we have used, and the

techniques we have examined have been used for many years; yet the field is one in which

many developments are still being made. Finitedifference codes have given us the ability

to mathematically represent and study the behavior of physical systems with increasing

accuracy and complexity. Their research and development remains an active and exciting

field for those interested in the application of mathematics and computing to the study of

the world around us.

195

Glossary

Adiabatic system (VII-C). A system that contains no processes that either absorb or

generate heat. In an adiabatic system, both pressure and internal energy are functions

of density.

Advective flux (V-A). Flux that occurs as a result of the motion of fluid from one

region to another. An example of this type of flux is heat convection.

Artificial viscosity (VI-E). An additional diffusion term that is added to the finite-

difference -momentum equation in order to counteract the negative diffusion that is

intrinsic to this approximation of a partial-differential equation.

Benard problem (VIII-C). A problem involving a long, thin flow passage that is

heated at the bottom, cooled at the top, and insulated along the sides. The Nusselt

number can be calculated in this system in relation to the Rayleigh number.

Boundary conditions (11-B). Equations that represent the external conditions that

act on a system.

Boussinesq approximation for heat flow (VIII-B). The assumption in an incom-

pressible fluid code that all terms of the momentum equation can be modeled at constant

density except the buoyancy term. The Boussinesq approximation for heat flow is not

to be confused with the Boussinesq approximation for the Reynolds stress tensor. These

are completely independent concepts.

Boussinesq approximation for the Reynolds stress tensor (UE-B). The approx-

imation of the Reynolds stress tensor as

-ut (5 + 2) + -KSilj 2 , dxj 3

where K is the turbulent kinetic energy and vt is the turbulent viscosity. The Boussinesq

approximation for the Reynolds stress tensor is not to be confused with the Boussinesq

approximation for heat flow.

196

Cartesian tensor notation (IX-A). A notation that makes use of subscripts to express

the general directionality of a quantity without explicitly stating that the quantity is in

a particular x-, y-, or z-direction. This notation is helpful in simplifying the equations

of fluid motion and aids in the complex derivations that are used to generate turbulence

transport models, as well as many other models in physics.

Cell (11-B). An element of finite size that is used to represent the conditions at an

arbitrary position in a system. A cell is also called a zone.

Centered flux (V-B). An advective expression that uses the average of the values of

the quantities on both sides of the advective surface as the value of the advected quantity.

Coefficient of heat conductivity (11-B). A quantity that is proportional to the rate

at which a given material conducts heat across a temperature gradient. Its units are
(energy)

(length)(time) (temperature) '

Compressible fluid (IV-A). A fluid that is moved at speeds comparable to its sound

speed,. causing it to change its density.

Conservation (11-A). The concept that mass, momentum, and energy are never

destroyed, only change form or move from one region to another.

Contact Discontinuity (IV-E). Any fluid discontinuity that moves with its fluid

elements, such as the fluid interface in a shock tube.

Correlation (IX-D). An interdependence between quantities not necessarily located

adjacent to each other.

Courant condition (IV-C). A numerical stability condition that occurs as a result of

the finite-difference approximation of the momentum equation. The Courant condition

is

(IV-36)

where v is (IUI 4- Gound).

Donor-cell flux (V-B). An advective expression that uses the upstream value of the

advected quantity.

197

Effective Reynolds number (IX-D). The Reynolds number as calculated using the

sum of the molecular and turbulence viscosities. See Reynolds number.

Error Function. A function that often results as a solution to a partial-differential

equation, the error function is defined as

2

2
e r f (x > - J e-x2dx .

J;;
0

The error function can be calculated using the table at the end of Section 111-E. It is

also called the probability integral.

Eulerian fluid-mechanics code (IV-A) . A code in which zones remain fixed in space.

In this type of code, fluids move in and out of zones at various rates, causing the mass

contained in a particular zone to change as the simulation progresses. All physical

quantities are fluxed between cells, but the positions of the cells remain the same.

Explicit solving method (111-C). A solving method in which values at each new time

cycle are calculated directly from the values at the previous time cycle. This is in contrast

to the implicit solving method.

Fictitious zones (11-D). Finite-difference zones that exist beyond the normal bound-

aries of a system and are used in representing boundary conditions. Fictitious zones are

also called ghost zones.

Fluid (IV-A). A material that is insnitely deformable or malleable. A fluid may resist

moving from one shape to mother but resists the same amount in all directions and in

aJ shapes.

Flux (11-A).

Ghost zones (11-D).

The amount of a quantity passing through a unit area in a unit time.

Zones that exist beyond -the normal boundaries of a system and

are used in representing boundary conditions. They are also called fictitious zones.

Hot spot (VIII-B). A section of wall that contains a prescribed temperature boundary

condition in an otherwise insulated system.

198

Implicit solving method (111-C). A solving method in which values at a new time

cycle are calculated based on the rate of change of values at this new time step. Values

at the old time step are used only indirectly. This is in contrast to the explicit method.

Incompressible fluid (IV-A). A fluid that moves at far subsonic speeds and does not

change its density.

Infinite-strength shock (IV-E). A shock that moves at a speed that is large compared

to the sound speed of the fluid ahead of the shock.

Insulated boundary condition (VIII-B). A boundary condition in which there is no

heat fluxed across the wall. It is achieved by specifying a zero temperature gradient

across the wall.

Isotropic (VII-B).

K - e turbulence model (IX-B). A turbulence representation that contains transport

equations for the turbulent kinetic energy per unit mass (K) and the dissipation rate of

that turbulence (E).

The quality of not varying as a function of direction.

Karman vortex street (VII-C). A type of turbulent fluid flow that occurs in systems

in which a fluid within an appropriate range of velocities and viscosities flows around an

object. The Karman vortex street is a fluctuating stream with alternating eddies that is

caused by the shedding of vortices. It is also sometimes called the Von K m a n vortex

street.

Kinematic viscosity (VII-B). The normal molecular viscosity of a fluid; the kinematic

viscosity is produced in gases by the fluctuating departures of the velocities of the

molecules from some mean value. In liquids it @ caused primarily by the intermolecular

forces.

Kronecker symbol (IX-B). A second order tensor that is designated as &,j . The

Kronecker symbol is one if i equals j and zero otherwise.

199

Lagrangian derivative (V-C) . An expression for the rate of change of a quantity along
the motion of a fluid. It is equal to 2 + 2~ a a x where q is the quantity that is changing.

The Lagrangian derivative is denoted as as opposed to 2.
Lagrangian fluid-mechanics code (IV-A). A fluid code in which the positions of

zones vary between time steps. As fluids are compressed and decompressed, the zones

move accordingly, maintaining an equal mass throughout the simulation. In a Lagrangian

calculation, the energies, momenta, and positions of the zones change from time step to

time step; only the mass contained by each zone is held fixed.

Mach number (VIII-E). The ratio of the velocity of a shock to the sound speed ahead

of that shock. The Mach number is defined as

V ME-.
Gound

Mach stem (VIII-E). A shock that is formed between a shock that hits an obstacle

and the resulting reflected shock. A Mach stem is always perpendicular to the obstacle.

Mass Matching (IV-E). In a Lagrangian calculation, the decreasing of the initial

volumes of the denser zones and the increasing of the initial volumes of the less dense

zones in a manner such that the masses of all zones itre equal.

Mean flow (IX-B). The steady part of a fluid flow; the part of a fluid flow that is not

considered turbulence.

Modeling (IX-B). The approximation of a true transport equation with a more simple

equation that retains the properties of the original equation but is not algebraically

equivalent.

Molecular Reynolds number (IX-D). The Reynolds number as calculated using only

the molecular (kinematic) viscosity. See Reynolds number.

Natural Convection (VIII-C). The circulating motion of fluid between regions of

different temperatures due to the dserence in the fluid density at each of these

temper at ures .

200

Navier-Stokes Equations (IV-B). A general term for the equations that describe the

motion of fluids.

Nonadvective flux (V-A). Flux in addition to the advective flux that occurs when

quantities diffuse from one area to another. Examples of this sort of flux are pressure

flux in the momentum equation and work flux in the energy equation.

Nusselt Number (VIII-C). The ratio between the total heat flux in a system and the

heat flux due only to conduction:

Total Flux
Conductive Flux

Nu = (VIII-26)

Obstacle (VIII-A). An object that prevents fluid from flowing through a specified

subregion.

Prescribed-temperature boundary condition (VIII-B) . A boundary condition in

which the wall exists at a prescribed temperature. For this condition the temperature

gradient across the wall is chosen such that the temperature at the wall remains at a

specified value.

Polytropic equation of state (IV-D). An equation that relates pressure to density

and internal energy in an ideal gas. The polytropic equation of state is

P = (7 - 1)pI * (IV-23)

Polytropic gas constant. A variable that represents the ratio of specific heats in an

ideal gas. The Polytropic gas constant is designated by a y.

Probability Integral. See error function.

Rarefaction Wave (IV-E). A wave that occurs in a region of high density when a

barrier is removed between that region and a region of lower density.

Rayleigh number (VIII-C). A dimensionless.number that relates the magnitudes of

the buoyancy and viscous forces in a system. In the Benard problem, the Rayleigh

number is calculated as
gh3pAT Ra=- >

UG
(VIII-27)

201

where g is the acceleration of gravity (defined as negative if downward), h is the height

of the passage, AT is the difference in temperatures between the top and the bottom

of the passage, v is the viscosity of the fluid, o is the thermometric conductivity of the

fluid, and p is the inverse of the reference temperature.

Reynolds number (VII-E). The Reynolds number is a dimensionless quantity that

compares the advective versus the diffusive properties of a system. It can be used to

predict the tendency of a system towards turbulence. For the Karman vortex street

problem, the Reynolds number is calculated as

hobsum
v

Re = , (VII-94)

where hobs is the height of the obstacle, urn is the velocity of the fluid far away from

the obstacle, and I/ is the viscosity of the fluid. As the Reynolds number increases, the

system is likely to become more turbulent.

Reynolds stress tensor (IX-B). A second order tensor that serves as a measure of

the turbulence of a system. The Reynolds stress tensor is equal to the ensemble average

of the product of the fluctuations in fluid velocities in two directions:

-
I I R, 13 . u p j ,

where uf and u$ are first order tensors representing the fluctuations in velocities in the

i- and j-directions.

Shear force (IX-B). A force similar to friction that is caused by flows at different

velocities rubbing against each other.

Shock (IV-E). A rapid transition between two states that moves relative to the fluid.

It is also called a shock front.

Shock Front (IV-E). Same as a shock.

Shock Tube (IV-E). A tube containing two fluids, usually gasses, of different densities

that are used to study the properties of shocks and rarefactions

202

Single-Point Turbulence Model (IX-D). A turbulence model that relies on the

values of quantities directly surrounding a single point to generate the turbulence values

at that point. Such a model contains no correlations.

Spectral Turbulence Model (IX-D). A turbulence model that establishes correlations

between different regions in a fluid. Turbulence values at any given point are calculated

in conjunction with these correlations rather than using only the values adjacent to that

point.

Staggered mesh (VU-B). A fluid dynamics computational mesh in which some

variables exist at cell walls and others exist at cell centers.

Streamlines (VI-D). Lines that indicate the path along which the fluid is flowing.

Strouhal Number (VII-E). A dimensionless number that relates the period of the

stream to the size of the object and the rate of the flow. The Strouhal number is a

dimensionless quantity that is calculated as

1 (VII-96) hobs

ucorstreet
St =

where hobs is the height of the obstacle, urn is the velocity of the fluid far away from

the obstacle, and r is the period of the street. In a Karman vortex street, the Strouhal

number has been experimentally observed to be approximately 0.2.

Taylor-series expansion (VI-C). An expansion that uses Taylor’s theorem. In a

Taylor-series expansion, a function f (x + dx) becomes

dx dx2 dx3
1 2! 3!

f (x) + - fyx) + - f”(x> + -Y(4 + * *

where f‘, f”, f“‘, etc., are the first, second, third, etc., derivatives of the function f.

Tensor order (E-A). A measure of the number of directional dimensions associated

with a quantity. A scalar, for example, has a tensor order of zero, indicating that it has

no directionality associated with it. A vector, having a single direction, is a quantity

with a tensor order of one. The Reynolds stress tensor, the product of two vectors, has

203

a tensor order of two. Higher order tensors exist with a number of directions equal to

their tensor order.

Thermometric conductivity (11-B). Notated by 0, this quantity is equal to the

coefficient of heat conductivity of a material divided by its density and specific heat

($) . Its units are those of an area per unit time.

Time cycle counter (11-B). An integer that represents the number of time cycles that

have been calculated in a simulation.

Truncation error analysis (VI-A). A method that can be applied to determine the

error of finitedifference approximations. Truncation error analysis involves using a

Taylor series expansion on a fhitedif€erence approximation and comparing the resulting

equation with the original partial-differential equation.

Turbulence (IX-B). The fluctuating portion of a fluid flow. The part of a fluid flow

that is not considered mean flow.

Turbulence scale (IX-D). A measure of the size of turbulent fluctuations. The

turbulence scale is denoted by an s and is calculated as
K3/2

E
s = - + (IX-42)

Turbulent kinetic energy (IX-B). The kinetic energy that is present in turbulent

fluctuations. Turbulent kinetic energy is often measured as turbulent kinetic energy per

unit mass which is denoted by K.

Turbulent viscosity (IX-B). Viscosity that results from turbulent fluctuations in a

fluid. It is denoted as vt.

Unconditionally unstable (V-B). Unstable regardless of the parameters that are

chosen.

Vortices (VII-E). Areas in a fluid flow where fluid is not moving along with the main

flow but rather circling in an eddy.

Wall function (IX-C). A function that is used to calculate K and E values at.the ghost

zones in problems where the turbulent conditions at the boundaries are important.

204

Zone (11-A). An element of finite size that is used to represent the conditions at an

arbitrary position in a system. A zone is also called a cell.

205

Acknowledgments

We would like to thank Margaret Findley for typsetting this work and creating the figures,

as well as Eric Harstad, Denise Hunter, and Patricia Mendius for help in editing, and

Thomas Adams and XHM for making the publication of this work possible. We would

also like to thank thank T-3, XHM, and Los Alamos National Laboratory for continuing

to support research programs for students in the sciences.

206

This report has been reproduced directly from the
best available copy.

It is available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62,
Oak Ridge, TN 37831.
Prices are available from
(615) 576-8401.

It is available to the public from the
National Technical Information Service,
US Department of Commerce,
5285 Port Royal Rd.,
Springfield, VA 22161.

Los Alamos ~~- -
N A T I O N A L L A B O R A T O R Y

Los Alamos, New Mexico 87545

	Abstract
	I INTRODUCTION
	I1 ONE-DIMENSIONAL HEAT FLOW
	A Flux and Conservation
	B Numerical Representation
	C Partial-Differential Equations
	D Computational Implementation of Equations
	E Programming and Results

	I11 NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS
	A A Graphical Explanation of the DBusional Stability Condition
	B A Mathematical Derivation of the Diffusional Stability Condition
	C Implicit Calculations
	D Computational Implementation of the Implicit Method
	E Anaytic Solution of the Heat-Flow Equation

	IV LAGRANGIAN FLUID DYNAMICS
	A Fluid Flow and Lagrangian Methods
	B Description of Equations Used in Lagrangian Fluid Flow
	C Viscous Pressure and Diffusion
	D Computational Lagrangian Fluid Flow
	E Shocks and Shock Tubes

	V EULERIAN FLUID DYNAMICS
	A Eulerian Methods and Advective Flux
	B The Equations of Eulerian Fluid Flow
	C The Partial-Differential Equations of Fluid Flow
	D Computational Implementation of Equations
	E Eulerian Results and Comparison of Eulerian and Lagrangian Simulations

	VI TRUNCATION ERROR ANALYSIS AND THE COURANT CONDITION
	A Introduction
	B Numerical Instability of the Cell-Centered Approach
	C Truncation Error Analysis
	D Truncation Error Analysis of The Donor-Cell Technique
	E Summary of Numerical Instabilities and Artificial Viscosity

	VI1 TWO-DIMENSIONALINCOMPRESSIBLEFLUIDFLOW
	A Calculations in Two-Dimensions
	B The Equations of Two-Dimensional Incompressible Fluid Flow
	C Solving Two-Dimensional Fluid-Flow Equations
	D Computational Implementation of Equations
	E Simulation of the Karman Vortex Street

	VI11 ADDITIONS TO TWO-DIMENSIONAL FLUID CODE
	A Flow Regions with Obstacles
	B Heatnansfer
	C Convection Calculations
	D Two-Dimensional Compressible Flow
	E Results of Two-Dimensional Compressible Flow

	IX TURBULENCE TRANSPORT
	A Tensor Notation
	B Turbulence Transport and K - E: Models
	C Computational Implementation of the K - E Turbulence-Transport Model
	D Turbulence Transport and the Karman Vortex Street

	Glossary
	Acknowledgments
	dx= 1.0 dt = 0.5 time =
	sigma = 1.0 dx = 1.0 dt = 0.505 time =
	Streamlines at time
	Streamlines at time

	Reynolds number of
	Streamlines at time
	Reynolds Number =
	Streamlines at time
	Reynolds Number =

