14,328 research outputs found
On the Backbending Mechanism of Cr
The mechanism of backbending in Cr is investigated in terms of the
Projected Shell Model and the Generator Coordinate Method. It is shown that
both methods are reasonable shell model truncation schemes. These two quite
different quantum mechanical approaches lead to a similar conclusion that the
backbending is due to a band crossing involving an excited band which is built
on simultaneously broken neutron and proton pairs in the ``intruder'' subshell
. It is pointed out that this type of band crossing is usually known
to cause the second backbending in rare-earth nuclei.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
Experimental determination of the turbulence in a liquid rocket combustion chamber
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity
The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion
For independent nearest-neighbour bond percolation on Z^d with d >> 6, we
prove that the incipient infinite cluster's two-point function and three-point
function converge to those of integrated super-Brownian excursion (ISE) in the
scaling limit. The proof is based on an extension of the new expansion for
percolation derived in a previous paper, and involves treating the magnetic
field as a complex variable. A special case of our result for the two-point
function implies that the probability that the cluster of the origin consists
of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an
error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong
statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic,
and xr package
Theoretical study of the (3x2) reconstruction of beta-SiC(001)
By means of ab initio molecular dynamics and band structure calculations, as
well as using calculated STM images, we have singled out one structural model
for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC,
amongst several proposed in the literature. This is an alternate dimer-row
model, with an excess Si coverage of 1/3, yielding STM images in good accord
with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com
New Lower Bounds on the Self-Avoiding-Walk Connective Constant
We give an elementary new method for obtaining rigorous lower bounds on the
connective constant for self-avoiding walks on the hypercubic lattice .
The method is based on loop erasure and restoration, and does not require exact
enumeration data. Our bounds are best for high , and in fact agree with the
first four terms of the expansion for the connective constant. The bounds
are the best to date for dimensions , but do not produce good results
in two dimensions. For , respectively, our lower bound is within
2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0
Theory and simulations of rigid polyelectrolytes
We present theoretical and numerical studies on stiff, linear
polyelectrolytes within the framework of the cell model. We first review
analytical results obtained on a mean-field Poisson-Boltzmann level, and then
use molecular dynamics simulations to show, under which circumstances these
fail quantitatively and qualitatively. For the hexagonally packed nematic phase
of the polyelectrolytes we compute the osmotic coefficient as a function of
density. In the presence of multivalent counterions it can become negative,
leading to effective attractions. We show that this results from a reduced
contribution of the virial part to the pressure. We compute the osmotic
coefficient and ionic distribution functions from Poisson-Boltzmann theory with
and without a recently proposed correlation correction, and also simulation
results for the case of poly(para-phenylene) and compare it to recently
obtained experimental data on this stiff polyelectrolyte. We also investigate
ion-ion correlations in the strong coupling regime, and compare them to
predictions of the recently advocated Wigner crystal theories.Comment: 32 pages, 15 figures, proceedings of the ASTATPHYS-MEX-2001, to be
published in Mol. Phy
- …