44 research outputs found

    EEG for good outcome prediction after cardiac arrest: a multicentre cohort study.

    Get PDF
    AIM Assess the prognostic ability of a non-highly malignant and reactive EEG to predict good outcome after cardiac arrest (CA). METHODS Prospective observational multicentre substudy of the "Targeted Hypothermia versus Targeted Normothermia after Out-of-hospital Cardiac Arrest Trial", also known as the TTM2-trial. Presence or absence of highly malignant EEG patterns and EEG reactivity to external stimuli were prospectively assessed and reported by the trial sites. Highly malignant patterns were defined as burst-suppression or suppression with or without superimposed periodic discharges. Multimodal prognostication was performed 96 hours after CA. Good outcome at 6 months was defined as a modified Rankin Scale score of 0-3. RESULTS 873 comatose patients at 59 sites had an EEG assessment during the hospital stay. Of these, 283 (32%) had good outcome. EEG was recorded at a median of 69 hours (IQR 47-91) after CA. Absence of highly malignant EEG patterns was seen in 543 patients of whom 255 (29% of the cohort) had preserved EEG reactivity. A non-highly malignant and reactive EEG had 56% (CI 50-61) sensitivity and 83% (CI 80-86) specificity to predict good outcome. Presence of EEG reactivity contributed (p<0.001) to the specificity of EEG to predict good outcome compared to only assessing background pattern without taking reactivity into account. CONCLUSION Nearly one-third of comatose patients resuscitated after CA had a non-highly malignant and reactive EEG that was associated with a good long-term outcome. Reactivity testing should be routinely performed since preserved EEG reactivity contributed to prognostic performance

    Smartphones as Multipurpose Intelligent Objects for AAL: Two Case Studies

    No full text
    The increasing adoption of smartphones among older adults, especially in most developed countries, suggests they can be used not only for personal communications, but also in the framework of Active and Assisted Living solutions. This paper addresses two case studies in which a smartphone, when equipped with a proper software application, may operate as an inactivity monitor, and a drug management assistant, respectively. Activity monitoring is carried out by targeting the user’s interaction with the smartphone related to incoming, outgoing, and lost calls. In the latter case, an application processes images of drugs boxes captured by the smartphone camera, to automatically recognize the name of the drug, and inform the user about the corresponding prescription. Experimental results show this kind of approach is technically feasible and may provide satisfactory performance through a very easy interaction, thus supporting improved medication adherence by patients

    Centrifugal microfluidics for sorting immune cells from whole blood

    No full text
    Sorting and enumeration of immune cells from blood are critical operations involved in many clinical applications. Conventional methods for sorting and counting immune cells from blood, such as flow cytometry and hemocytometers, are tedious, inaccurate, and difficult for implementation for point-of-care (POC) testing. Herein we developed a microscale centrifugal technology termed Centrifugal Microfluidic Chip (CMC) capable of sorting immune cells from blood and in situ cellular analysis in a laboratory setting. Operation of the CMC entailed a blood specimen layered on a density gradient medium and centrifuged in microfluidic channels where immune cell subpopulations could rapidly be sorted into distinct layers according to their density differentials. We systematically studied effects of different blocking molecules for surface passivation of the CMC. We further demonstrated the applicability of CMCs for rapid separation of minimally processed human whole blood without affecting immune cell viability. Multi-color imaging and analysis of immune cell distributions and enrichment such as recovery and purity rates of peripheral blood mononuclear cells (PBMCs) were demonstrated using CMCs. Given its design and operation simplicity, portability, blood cell sorting efficiency, and in situ cellular analysis capability, the CMC holds promise for blood-based diagnosis and disease monitoring in POC applications

    Future trend medical apps

    No full text
    corecore