1,180 research outputs found

    Eclipsing high-mass binaries I. Light curves and system parameters for CPD-518946, PISMIS24-1 and HD319702

    Full text link
    We present first results of a comprehensive photometric O-star survey performed with a robotic twin refractor at the Universit\"atssternwarte Bochum located near Cerro Armazones in Chile. For three high-mass stars, namely Pismis24-1, CPD-518946 and HD319702, we determined the period through the Lafler-Kinman algorithm and model the light curves within the framework of the Roche geometry. For Pismis24-1, a previously known eclipsing binary, we provide first light curves and determined a photometric period of 2.36 days together with an orbital inclination of 61.8 degrees. The best-fitting model solution to the light curves suggest a detached configuration. With a primary temperature of T1 = 42520K we obtain the temperature of the secondary component as T2 = 41500K. CPD-518946 is another known eclipsing binary for which we present a revised photometric period of 1.96 days with an orbital inclination of 58.4 degrees. The system has likely a semi-detached configuration and a mass ratio q = M1/M2 = 2.8. If we adopt a primary temperature of T1 = 34550K we obtain T2 = 21500K for the secondary component. HD319702 is a newly discovered eclipsing binary member of the young open cluster NGC6334. The system shows well-defined eclipses favouring a detached configuration with a period of 2.0 days and an orbital inclination of 67.5 degrees. Combining our photometric result with the primary spectral type O8 III(f) (T1 = 34000K) we derive a temperature of T2 = 25200K for the secondary component.Comment: 7 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Redshift estimates for fast radio bursts and implications on intergalactic magnetic fields

    Get PDF
    Context: Fast Radio Bursts are transient radio pulses from presumably compact stellar sources of extragalactic origin. With new telescopes detecting multiple events per day, statistical methods are required in order to interpret observations and make inferences regarding astrophysical and cosmological questions. Purpose: We present a method that uses probability estimates of fast radio burst observables to obtain likelihood estimates for the underlying models. Method: Considering models for all regions along the line-of-sight, including intervening galaxies, we perform Monte-Carlo simulations to estimate the distribution of the dispersion measure, rotation measure and temporal broadening. Using Bayesian statistics, we compare these predictions to observations of Fast Radio Bursts. Results: By applying Bayes theorem, we obtain lower limits on the redshift of Fast Radio Bursts with extragalactic DM 400\gtrsim 400 pc cm3^{-3}. We find that intervening galaxies cannot account for all highly scattered Fast Radio Bursts in FRBcat, thus requiring a denser and more turbulent environment than a SGR 1935+2154-like magnetar. We show that a sample of 103\gtrsim 10^3 unlocalized Fast Radio Bursts with associated extragalactic RM 1\geq 1 rad m2^{-2} can improve current upper limits on the strength of intergalactic magnetic fields.Comment: 23 pages, 12 figures, accepted by MNRA

    Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields

    Get PDF
    We investigate the possibility of measuring intergalactic magnetic fields using the dispersion measures and rotation measures of fast radio bursts. With Bayesian methods, we produce probability density functions for values of these measures. We distinguish between contributions from the intergalactic medium, the host galaxy, and the local environment of the progenitor. To this end, we use constrained, magnetohydrodynamic simulations of the local Universe to compute lines-of-sight integrals from the position of the Milky Way. In particular, we differentiate between predominantly astrophysical and primordial origins of magnetic fields in the intergalactic medium. We test different possible types of host galaxies and probe different distribution functions of fast radio burst progenitor locations inside the host galaxy. Under the assumption that fast radio bursts are produced by magnetars, we use analytic predictions to account for the contribution of the local environment. We find that less than 100 fast radio bursts from magnetars in stellar-wind environments hosted by starburst dwarf galaxies at redshift z ≳ 0.5 suffice to discriminate between predominantly primordial and astrophysical origins of intergalactic magnetic fields. However, this requires the contribution of the Milky Way to be removed with a precision of ≈1 rad m-2. We show the potential existence of a subset of fast radio bursts whose rotation measures carry information on the strength of the intergalactic magnetic field and its origins

    The broad-line region and dust torus size of the Seyfert 1 galaxy PGC50427

    Full text link
    We present the results of a three years monitoring campaigns of the z=0.024z = 0.024 type-1 active galactic nucleus (AGN) PGC50427. Through the use of Photometric Reverberation Mapping with broad and narrow band filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα\alpha emission line. The Hα\alpha emission line responds to blue continuum variations with an average rest frame lag of 19.0±1.2319.0 \pm 1.23 days. Using single epoch spectroscopy we determined a broad-line Hα\alpha velocity width of 1020 km s1^{-1} and in combination with the rest frame lag and adoption a geometric scaling factor f=5.5f = 5.5, we calculate a black hole mass of MBH17×106MM_{BH} \sim 17 \times 10^{6} M_{\odot}. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100\AA~ luminosity at the time of our monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC50427 in the BLR size -- AGN luminosity diagram, which is remarkably close to the theoretically expected relation of RL0.5R \propto L^{0.5}. The simultaneous optical and NIR (JJ and KsK_{s}) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (1800K\sim 1800K) lags the optical variations with an average rest frame lag of 46.2±2.6046.2 \pm 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC50427 on the known τMV\tau - M{V} diagram. The simultaneus observations for the broad-line region and dust thermal emission demonstrate that the innermost dust torus is located outside the BLR in PGC50427, supporting the unified scheme for AGNs. (Abstract shortened, see the manuscript.)Comment: 11 pages, 23 figures, accepted for publication in Astronomy and Astrophysic

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure

    Quantum stereodynamics of Li + HF reactive collisions: The role of reactants polarization on the differential cross section

    Get PDF
    A complete quantum study for the state-to-state Li + HF(v,j,m) → LiF(v′,j′,Ω′) + H reactive collisions has been performed using a wave packet method, for different initial rotational states and helicity states of the reactants. The state-to-state differential cross section has been simulated, and the polarization of products extracted. It is found that the reactivity is enhanced for nearly collinear collisions, which produces a vibrational excitation of HF, needed to overcome the late barrier. It is also found that LiF(v′ = 0) products are preferentially forward scattered, while vibrationally excited LiF(v′ = 1 and 2) are backward scattered. These results are interpreted with a simple reaction mechanism, based on the late character and bent geometry of the transition state, originating from a covalent/ionic crossing, which consists of two steps: the arrival at the transition state and the dissociation. In the first step, in order to get to the saddle point some HF vibrational excitation is required, which favors head-on collisions and therefore low values of m. In the second step a fast dissociation of H atom takes place, which is explained by the ionic Li+F -H character of the bent transition state: the FH- is repulsive making that H depart rapidly leaving a highly rotating LiF molecule. For the higher energy analyzed, where resonances slightly contribute, the orientation and alignment of product rotational states, referred to as reactants frame (with the z-axis parallel to k), are approximately constant with the scattering angle. The alignment is close to -1, showing that j′ is perpendicular to k, while starting from initial states with well defined rotational orientation, as states with pure m values, the final rotational are also oriented. It is also found that when using products frame (with the z′-axis parallel to k′) the rotational alignment and orientation of products varies a lot with the scattering angle just because the z′ axis changes from being parallel to anti-parallel to k when varying from θ = 0 to π. © the Owner Societies 2011.This work has been supported by the Ministerio de Ciencia e Innovación, under grants CSD2009-00038 (programa CONSOLIDER-INGENIO 2010 entitled “Molecular Astrophysics: the Herschel and Alma era”), FIS2010-18132, CTQ2008-02578 and CTQ2007-62898, and by Comunidad Autónoma de Madrid (CAM) under Grant No. S-0505/MAT/0303.Peer Reviewe

    Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer

    Get PDF
    The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (T(UM)) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and T(UM) occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8(+) T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1(-) TIM-3(-). To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue

    Jet Substructure Without Trees

    Get PDF
    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE
    corecore