177 research outputs found
Optimizing scale-up of Vero cells cultured on microcarriers in serum-free medium for vaccine production
Vaccine production with adherent cell lines faces multiple challenges which include selection of a suitable vessel, detachment of cells for scale up, optimization of infection, as well as harvest of virus particles. Microcarriers greatly increase the surface area for adherent cells and offer flexibility for expansion to bioreactors, but scale-up methods require optimization of bead-to-bead transfer. Even though the majority of cell culture based vaccines are produced with adherent cell lines, literature provides limited information in regards to optimization of adherent cell line processes. Some process improvements have been achieved; for example, recent advances in serum free media which no longer require medium exchange prior to virus infection. In this study we focus on the production of the rabies virus surrogate, vesicular stomatitis virus, in Vero cells. Using Cytodex-1 microcarriers in spinner flasks, we evaluated effects of intermittent and continuous stirring, detachment of cells, variation in the addition of new microcarriers on the growth of Vero cells, and effects on vesicular stomatitis virus production. Viable cell density measurements revealed that initial intermittent stirring resulted in increased cell densities compared to continuous stirring after microcarrier addition. In an effort to further simplify the process, we demonstrate that detachment of cells was not required to facilitate bead-to-bead transfer on Cytodex-1 microcarriers
The radical character of the acenes: A density matrix renormalization group study
We present a detailed investigation of the acene series using high-level
wavefunction theory. Our ab-initio Density Matrix Renormalization Group
algorithm has enabled us to carry out Complete Active Space calculations on the
acenes from napthalene to dodecacene correlating the full pi-valence space.
While we find that the ground-state is a singlet for all chain-lengths,
examination of several measures of radical character, including the natural
orbitals, effective number of unpaired electrons, and various correlation
functions, suggests that the longer acene ground-states are polyradical in
nature.Comment: 10 pages, 8 figures, supplementary material, to be published in J.
Chem. Phys. 127, 200
Step-Wise Computational Synthesis of Fullerene C60 derivatives. 1.Fluorinated Fullerenes C60F2k
The reactions of fullerene C60 with atomic fluorine have been studied by
unrestricted broken spin-symmetry Hartree-Fock (UBS HF) approach implemented in
semiempirical codes based on AM1 technique. The calculations were focused on a
sequential addition of fluorine atom to the fullerene cage following indication
of the cage atom highest chemical susceptibility that is calculated at each
step. The effectively-non-paired-electron concept of the fullerene atoms
chemical susceptibility lays the foundation of the suggested computational
synthesis. The obtained results are analyzed from energetic, symmetry, and the
composition abundance viewpoints. A good fitting of the data to experimental
findings proves a creative role of the suggested synthesis methodology.Comment: 33 pages, 11 figures, 2 tables, 2 chart
Spin states of zigzag-edged Mobius graphene nanoribbons from first principles
Mobius graphene nanoribbons have only one edge topologically. How the
magnetic structures, previously associated with the two edges of zigzag-edged
flat nanoribbons or cyclic nanorings, would change for their Mobius
counterparts is an intriguing question. Using spin-polarized density functional
theory, we shed light on this question. We examine spin states of zigzag-edged
Mobius graphene nanoribbons (ZMGNRs) with different widths and lengths. We find
a triplet ground state for a Mobius cyclacene, while the corresponding
two-edged cyclacene has an open-shell singlet ground state. For wider ZMGNRs,
the total magnetization of the ground state is found to increase with the
ribbon length. For example, a quintet ground state is found for a ZMGNR. Local
magnetic moments on the edge carbon atoms form domains of majority and minor
spins along the edge. Spins at the domain boundaries are found to be
frustrated. Our findings show that the Mobius topology (i.e., only one edge)
causes ZMGNRs to favor one spin over the other, leading to a ground state with
non-zero total magnetization.Comment: 17 pages, 4 figure
Entanglement Measures for Single- and Multi-Reference Correlation Effects
Electron correlation effects are essential for an accurate ab initio
description of molecules. A quantitative a priori knowledge of the single- or
multi-reference nature of electronic structures as well as of the dominant
contributions to the correlation energy can facilitate the decision regarding
the optimum quantum chemical method of choice. We propose concepts from quantum
information theory as orbital entanglement measures that allow us to evaluate
the single- and multi-reference character of any molecular structure in a given
orbital basis set. By studying these measures we can detect possible artifacts
of small active spaces.Comment: 14 pages, 4 figure
Estimatation of evapotranspiration and crop coefficient of melon cultivated in protected environment
Nascentome Analysis Uncovers Futile Protein Synthesis in Escherichia coli
Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a “nascentome.” We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms
Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis
BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms
- …