717 research outputs found

    LISA double black holes: Dynamics in gaseous nuclear discs

    Get PDF
    We study the inspiral of double black holes, with masses in the LISA window of detectability, orbiting inside a massive circum-nuclear disc. Using high-resolution SPH simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes lose memory of their initial orbital eccentricity if they co-rotate with the gaseous disc, forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits the initial eccentricity does not decrease, and the black holes may bind forming an eccentric binary. When dynamical friction has subsided, for equal mass black holes and regardless their initial eccentricity, angular momentum loss, driven by the gravitational torque exerted on the binary by surrounding gas, is nevertheless observable down to the smallest scale probed. In the case of unequal masses, dynamical friction remains efficient down to our resolution limit, and there is no sign of formation of any ellipsoidal gas distribution that may further harden the binary. During inspiral, gravitational capture of gas by the black holes occurs mainly along circular orbits: eccentric orbits imply high relative velocities and weak gravitational focusing. Thus, AGN activity may be excited during the black hole pairing process and double active nuclei may form when circularization is completed, on distance-scales of tens of pcs.Comment: Minor changes, accepted to MNRAS (11 pags, 14 figs). Movies (.avi) are available at http://pitto.mib.infn.it/~haardt/MOVIES

    Unresolved X-ray background: clues on galactic nuclear activity at z>6

    Get PDF
    We study, by means of dedicated simulations of massive black hole build-up, the possibility to constraint the existence and nature of the AGN population at z>6 with available and planned X-ray and near infrared space telescopes. We find that X-ray deep-field observations can set important constraints to the faint-end of the AGN luminosity function at very high redshift. Planned X-ray telescopes should be able to detect AGN hosting black holes with masses down to >10^5 Msun (i.e., X-ray luminosities in excess of 10^42 erg s^-1), and can constrain the evolution of the population of massive black hole at early times (6<z<10). We find that this population of AGN should contribute substantially (~25%) to the unresolved fraction of the cosmic X-ray background in the 0.5-10 keV range, and that a significant fraction (~3-4%) of the total background intensity would remain unaccounted even after future X-ray observations. As byproduct, we compute the expected UV background from AGN at z>6 and we discuss the possible role of AGN in the reionization of the Universe at these early epochs, showing that AGN alone can provide enough ionizing photons only in the (improbable) case of an almost completely homogeneous inter-galactic medium. Finally, we show that super-Eddington accretion, suggested by the observed QSOs at z>6, must be a very rare event, confined to black holes living in the highest density peaks.Comment: 9 pages, 7 figures, MNRAS in pres

    Hypervelocity stars and the environment of Sgr A*

    Get PDF
    Hypervelocity stars (HVSs) are a natural consequence of the presence of a massive nuclear black hole (Sgr A*) in the Galactic Center. Here we use the Brown et al. sample of unbound and bound HVSs together with numerical simulations of the propagation of HVSs in the Milky Way halo to constrain three plausible ejection mechanisms: 1) the scattering of stars bound to Sgr A* by an inspiraling intermediate-mass black hole (IMBH); 2) the disruption of stellar binaries in the tidal field of Sgr A*; and 3) the two-body scattering of stars off a cluster of stellar-mass black holes orbiting Sgr A*. We compare the predicted radial and velocity distributions of HVSs with the limited-statistics dataset currently available, and show that the IMBH model appears to produce a spectrum of ejection velocities that is too flat. Future astrometric and deep wide-field surveys of HVSs should shed unambiguous light on the stellar ejection mechanism and probe the Milky Way potential on scales as large as 200 kpc.Comment: 5 pages, 5 figures, accepted for publication in MNRAS letter

    Growing massive black holes through super-critical accretion of stellar-mass seeds

    Full text link
    The rapid assembly of the massive black holes that power the luminous quasars observed at z67z \sim 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses 105M\sim 10^5\,\rm M_\odot, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the "slim disc" solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.Comment: 12 pages, 8 figures, 2 tables. Accepted for publication in MNRA
    corecore