136 research outputs found
Nitrogen evolution in the halo, thick disc, thin disc and bulge of the Galaxy
We study the evolution of nitrogen (N) in the Galactic halo, thick disc, thin disc, and bulge by comparing detailed chemical evolution models with recent observations. The models used in this work have already been constrained to explain the abundance patterns of α-elements and the metallicity distribution functions of halo, disc, and bulge stars; here, we adopt them to investigate the origin and evolution of N in the different Galactic components. First, we consider different sets of yields and study the importance of the various channels proposed for N production. Secondly, we apply the reference models to study the evolution of both the Galactic discs and bulge. We conclude that: i) primary N produced by rotating massive stars is required to reproduce the plateau in log(N/O) and [N/Fe] ratios at low metallicity, as well as the secondary and primary production from low- and intermediate-mass stars to reproduce the data of the thin disc; ii) the parallel model can provide a good explanation of the evolution of N abundance in the thick and thin discs, and we confirm that the thick disc has evolved much faster than the thin disc, in agreement with the results from the abundance patterns of other chemical elements; and iii) finally, we present new model predictions for N evolution in the Galactic bulge, and we show that the observations in bulge stars can be explained if massive stars rotate fast during the earliest phases of Galactic evolution, in agreement with findings from the abundance pattern of carbon
Abundance gradients along the Galactic disc from chemical evolution models
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([\u3b1/Fe] versus [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc, and the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. for the solar neighbourhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes that mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, H II regions, and PNe. We conclude that the inside-out scenario is a key ingredient but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn
Chemical evolution of the Milky Way: constraints on the formation of the thick and thin discs
We study the evolution of Milky Way thick and thin discs in the light of the most recent observational data. In particular, we analyse abundance gradients of O, N, Fe, and Mg along the thin disc as well as the [Mg/Fe] versus [Fe/H] relations and the metallicity distribution functions at different Galactocentric distances. We run several models starting from the two-infall paradigm, assuming that the thick and thin discs formed by means of two different infall episodes, and we explore several physical parameters, such as radial gas flows, variable efficiency of star formation, different times for the maximum infall on to the disc, different distributions of the total surface mass density of the thick disc, and enriched gas infall. Our best model suggests that radial gas flows and variable efficiency of star formation should be acting together with the inside-out mechanism for the thin disc formation. The time-scale for maximum infall on to the thin disc, which determines the gap between the formation of the two discs, should be tmax â 3.25 Gyr. The thick disc should have an exponential, small-scale length density profile and gas infall on the inner thin disc should be enriched. We also compute the evolution of GaiaâEnceladus system and study the effects of possible interactions with the thick and thin discs. We conclude that the gas lost by Enceladus or even part of it could have been responsible for the formation of the thick disc but not the thin disc
Instantaneous neural processing of communicative functions conveyed by speech prosody
During conversations, speech prosody provides important clues about the speakerâs communicative intentions. In many languages, a rising vocal pitch at the end of a sentence typically expresses a question function, whereas a falling pitch suggests a statement. Here, the neurophysiological basis of intonation and speech act understanding were investigated with high-density electroencephalography (EEG) to determine whether prosodic features are reflected at the neurophysiological level. Already approximatelyâ100 ms after the sentence-final word differing in prosody, questions, and statements expressed with the same sentences led to different neurophysiological activity recorded in the event-related potential. Interestingly, low-pass filtered sentences and acoustically matched nonvocal musical signals failed to show any neurophysiological dissociations, thus suggesting that the physical intonation alone cannot explain this modulation. Our results show rapid neurophysiological indexes of prosodic communicative information processing that emerge only when pragmatic and lexico-semantic information are fully expressed. The early enhancement of question-related activity compared with statements was due to sources in the articulatory-motor region, which may reflect the richer action knowledge immanent to questions, namely the expectation of the partner action of answering the question. The present findings demonstrate a neurophysiological correlate of prosodic communicative information processing, which enables humans to rapidly detect and understand speaker intentions in linguistic interactions
On the use of haptic tablets for UGV teleoperation in unstructured environments: system design and evaluation
Teleoperation of Unmanned Ground Vehicles (UGVs), particularly for inspection of unstructured and
unfamiliar environments still raises important challenges from the point of view of the operator interface.
One of these challenges is caused by the fact that all information available to the operator is presented to the operator through a computer interface, providing only a partial view of the robot situation. The majority of existing interfaces provide information using visual, and, less frequently, sound channels. The lack of Situation Awareness (SA), caused by this partial view, may lead to an incorrect and inefficient response to the current UGV state, usually confusing and frustrating the human operator. For instance, the UGV may become stuck in debris while the operator struggles to move the robot, not understanding the cause of the UGV lack of motion. We address this problem by studying the use of haptic feedback to improve operator SA. More precisely, improving SA with respect to the traction state of the UGV, using a haptic tablet for both commanding the robot and conveying traction state to the user by haptic feedback. We report (1) a teleoperating interface, integrating a haptic tablet with an existing UGV teleoperation interface, and (2) the experimental results of a user study designed to evaluate the advantage of this interface in the teleoperation of a UGV, in a search and rescue scenario. Statistically significant results were found supporting the hypothesis that using the haptic tablet elicits a reduction in the time that the UGV spends in states without traction.info:eu-repo/semantics/publishedVersio
APOGEE DR16: A multi-zone chemical evolution model for the Galactic disc based on MCMC methods
Context. The analysis of the latest release of the Apache Point Observatory Galactic Evolution Experiment project (APOGEE DR16) data suggests the existence of a clear distinction between two sequences of disc stars at different Galactocentric distances in the [α/Fe] versus [Fe/H] abundance ratio space: the so-called high-α sequence, classically associated with an old population of stars in the thick disc with high average [α/Fe], and the low-α sequence, which mostly comprises relatively young stars in the thin disc with low average [α/Fe].Aims. We aim to constrain a multi-zone two-infall chemical evolution model designed for regions at different Galactocentric distances using measured chemical abundances from the APOGEE DR16 sample.Methods. We performed a Bayesian analysis based on a Markov chain Monte Carlo method to fit our multi-zone two-infall chemical evolution model to the APOGEE DR16 data.Results. An inside-out formation of the Galaxy disc naturally emerges from the best fit of our two-infall chemical-evolution model to APOGEE-DR16: Inner Galactic regions are assembled on shorter timescales compared to the external ones. In the outer disc (with radii Râ>â6 kpc), the chemical dilution due to a late accretion event of gas with a primordial chemical composition is the main driver of the [Mg/Fe] versus [Fe/H] abundance pattern in the low-α sequence. In the inner disc, in the framework of the two-infall model, we confirm the presence of an enriched gas infall in the low-α phase as suggested by chemo-dynamical models. Our Bayesian analysis of the recent APOGEE DR16 data suggests a significant delay time, ranging from âŒ3.0 to 4.7 Gyr, between the first and second gas infall events for all the analysed Galactocentric regions. The best fit model reproduces several observational constraints such as: (i) the present-day stellar and gas surface density profiles; (ii) the present-day abundance gradients; (iii) the star formation rate profile; and (iv) the solar abundance values.Conclusions. Our results propose a clear interpretation of the [Mg/Fe] versus [Fe/H] relations along the Galactic discs. The signatures of a delayed gas-rich merger which gives rise to a hiatus in the star formation history of the Galaxy are impressed in the [Mg/Fe] versus [Fe/H] relation, determining how the low-α stars are distributed in the abundance space at different Galactocentric distances, which is in agreement with the finding of recent chemo-dynamical simulations
The AMBRE project: chemical evolution models for the Milky Way thick and thin discs
We study the chemical evolution of the thick and thin discs of the Galaxy by comparing detailed chemical evolution models with recent data from the Archéologie avec Matisse Basée sur les aRchives de l'ESO project. The data suggest that the stars in the thick and thin discs form two distinct sequences with the thick disc stars showing higher [α/Fe] ratios. We adopt two different approaches to model the evolution of thick and thin discs. In particular, we adopt (i) a two-infall approach where the thick disc forms fast and before the thin disc and by means of a fast gas accretion episode, whereas the thin disc forms by means of a second accretion episode on a longer time-scale; (ii) a parallel approach, where the two discs form in parallel but at different rates. By comparing our model results with the observed [Mg/Fe] versus [Fe/H] and the metallicity distribution functions in the two Galactic components, we conclude that the parallel approach can account for a group of α-enhanced metal-rich stars present in the data, whereas the two-infall approach cannot explain these stars unless they are the result of stellar migration. In both approaches, the thick disc has formed on a time-scale of accretion of 0.1 Gyr, whereas the thin disc formed on a time-scale of 7 Gyr in the solar region. In the two-infall approach, a gap in star formation between the thick and thin disc formation of several hundreds of Myr should be present, at variance with the parallel approach where no gap is present
Galactic Archaeology with asteroseismic ages: Evidence for delayed gas infall in the formation of the Milky Way disc
Context. Precise stellar ages from asteroseismology have become available and can help to set stronger constraints on the evolution of the Galactic disc components. Recently, asteroseismology has confirmed a clear age difference in the solar annulus between two distinct sequences in the [α/Fe] versus [Fe/H] abundance ratios relation: the high-α and low-α stellar populations. Aims: We aim to reproduce these new data with chemical evolution models including different assumptions for the history and number of accretion events. Methods: We tested two different approaches: a revised version of the "two-infall" model where the high-α phase forms by a fast gas accretion episode and the low-α sequence follows later from a slower gas infall rate, and the parallel formation scenario where the two disc sequences form coevally and independently. Results: The revised two-infall model including uncertainties in age and metallicity is capable of reproducing: i) the [α/Fe] versus [Fe/H] abundance relation at different Galactic epochs, ii) the age-metallicity relation and the time evolution [α/Fe]; iii) the age distribution of the high-α and low-α stellar populations, iv) the metallicity distribution function. The parallel approach is not capable of properly reproducing the stellar age distribution, in particular at old ages. Conclusions: The best chemical evolution model is the revised two-infall one, where a consistent delay of âŒ4.3 Gyr in the beginning of the second gas accretion episode is a crucial assumption to reproduce stellar abundances and ages
An asteroseismic age estimate of the open cluster NGC 6866 using Kepler and Gaia
Asteroseismology of solar-like oscillations in giant stars allow the
derivation of their masses and radii. For members of open clusters this allows
an age estimate of the cluster which should be identical to the age estimate
from the colour-magnitude diagram, but independent of the uncertainties that
are present for that type of analysis. Thus, a more precise and accurate age
estimate can be obtained. We aim to measure asteroseismic properties of
oscillating giant members of the open cluster NGC 6866 and utilise these for a
cluster age estimate. Model comparisons allow constraints on the stellar
physics, and here we investigate the efficiency of convective-core overshoot
and effects of rotation during the main-sequence, which has a significant
influence on the age for these relatively massive giants. We identify six giant
members of NGC 6866 and derive asteroseismic measurements for five of them.
This constrains the convective-core overshoot and enables a more precise and
accurate age estimate than previously possible. Asteroseismology establishes
the helium-core burning evolutionary phase for the giants, which have a mean
mass of 2.8 . Their radii are significantly smaller than predicted
by current 1D stellar models unless the amount of convective-core overshoot on
the main sequence is reduced to in the
step-overshoot description. Our measurements also suggest that rotation has
affected the evolution of the stars in NGC 6866 in a way that is consistent
with 3D simulations but not with current 1D stellar models. The cluster age is
estimated to be 0.43 0.05 Gyr, significantly younger and more precise
than most previous estimates. We derive a precise cluster age while
constraining convective-core overshooting and effects of rotation in the
models. We uncover potential biases for automated age estimates of helium-core
burning stars.Comment: Accepted on 21/08/2023 for publication in Section 7. Stellar
structure and evolution of Astronomy & Astrophysics. 20 Pages, 11 Figures +
appendi
- âŠ