70 research outputs found

    Heisenberg frustrated magnets: a nonperturbative approach

    Full text link
    Frustrated magnets are a notorious example where the usual perturbative methods are in conflict. Using a nonperturbative Wilson-like approach, we get a coherent picture of the physics of Heisenberg frustrated magnets everywhere between d=2d=2 and d=4d=4. We recover all known perturbative results in a single framework and find the transition to be weakly first order in d=3d=3. We compute effective exponents in good agreement with numerical and experimental data.Comment: 5 pages, Revtex, technical details available at http://www.lpthe.jussieu.fr/~tissie

    Pion double charge exchange on 4He

    Get PDF
    The doubly differential cross sections for the 4^4He(π+,π)4p(\pi^+,\pi^-) 4p reaction were calculated using both a two-nucleon sequential single charge exchange model and an intranuclear cascade code. Final state interactions between the two final protons which were the initial neutrons were included in both methods. At incident pion energies of 240 and 270 MeV the low-energy peak observed experimentally in the energy spectrum of the final pions can be understood only if the contribution of pion production is included. The calculated cross sections are compared with data.Comment: 25 pages, 9 figure

    Optimization of the derivative expansion in the nonperturbative renormalization group

    Get PDF
    We study the optimization of nonperturbative renormalization group equations truncated both in fields and derivatives. On the example of the Ising model in three dimensions, we show that the Principle of Minimal Sensitivity can be unambiguously implemented at order 2\partial^2 of the derivative expansion. This approach allows us to select optimized cut-off functions and to improve the accuracy of the critical exponents ν\nu and η\eta. The convergence of the field expansion is also analyzed. We show in particular that its optimization does not coincide with optimization of the accuracy of the critical exponents.Comment: 13 pages, 9 PS figures, published versio

    The Ursinus Weekly, March 4, 1918

    Get PDF
    Freshmen conquer sophomores • Varsity drops two games • Choirs to give sacred cantata • Zwinglian prize essay: A longer daylight day • Student Volunteer Band holds meeting • Literary societies • Snow-white • The fable of the man with the new ideahttps://digitalcommons.ursinus.edu/weekly/2552/thumbnail.jp

    A non perturbative approach of the principal chiral model between two and four dimensions

    Full text link
    We investigate the principal chiral model between two and four dimensions by means of a non perturbative Wilson-like renormalization group equation. We are thus able to follow the evolution of the effective coupling constants within this whole range of dimensions without having recourse to any kind of small parameter expansion. This allows us to identify its three dimensional critical physics and to solve the long-standing discrepancy between the different perturbative approaches that characterizes the class of models to which the principal chiral model belongs.Comment: 5 pages, 1 figure, Revte

    Mechanical characterization and induced crystallization in nanocomposites of thermoplastics and carbon nanotubes

    Get PDF
    Nanocomposites built from polymers and carbon nanotubes (CNTs) are a promising class of materials. Computer modeling can provide nanoscale views of the polymer–CNT interface, which are much needed to foster the manufacturing and development of such materials. However, setting up periodic nanocomposite models is a challenging task. Here we propose a computational workflow based on Molecular Dynamics simulations. We demonstrate its capabilities and showcase its applications, focusing on two existing nanocomposite materials: polystyrene (PS) with CNT and polyether ether ketone with CNT. The models provide insights into the polymer crystallization inside CNTs. Furthermore, the PS+CNT nanocomposite models are mechanically tested and able to predict an enhancement in Young’s modulus due to the addition of highly dispersed CNTs. We accompany those results with experimental tests and provide a prediction model based on Dynamic Quantized Fracture Mechanics theory. Our study proposes representative simulations of polymer–CNT nanocomposites as promising tools to guide the rational design of this class of materials

    Few-body resonances in light nuclei

    Get PDF
    We have localized several few-body resonances in light nuclei, using methods which can properly handle two- or three-body resonant states. Among other results, we predict the existence of a three-neutron resonance, small spin-orbit splittings between the low-lying states in He-5 and Li-5, the nonexistence of the soft dipole resonance in He-6, new 1+ states in Li-8 and B-8, and the presence of a nonlinear amplification phenomenon in the 0+_2 state of C-12

    Structure and mechanism of the reversible photoswitch of a fluorescent protein

    Get PDF
    Proteins that can be reversibly photoswitched between a fluorescent and a nonfluorescent state bear enormous potential in diverse fields, such as data storage, in vivo protein tracking, and subdiffraction resolution light microscopy. However, these proteins could hitherto not live up to their full potential because the molecular switching mechanism is not resolved. Here, we clarify the molecular photoswitching mechanism of asFP595, a green fluorescent protein (GFP)-like protein that can be transferred from a nonfluorescent "off" to a fluorescent "on" state and back again, by green and blue light, respectively. To this end, we establish reversible photoswitching of fluorescence in whole protein crystals and show that the switching kinetics in the crystal is identical with that in solution. Subsequent x-ray analysis demonstrated that upon the absorption of a green photon, the chromophore isomerizes from a trans (off) to a cis (on) state. Molecular dynamics calculations suggest that isomerization occurs through a bottom hula twist mechanism with concomitant rotation of both bonds of the chromophoric methine ring bridge. This insight into the switching mechanism should facilitate the targeted design of photoswitchable proteins. Reversible photoswitching of the protein chromophore system within intact crystals also constitutes a step toward the use of fluorescent proteins in three-dimensional data recording

    Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

    Get PDF
    International audienceThe mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulation as a computational microscope allows investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy including sample preparation, measurement and analysis of force spectroscopy using AFM and its interpretation in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging of computational tools with experimental technique

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts
    corecore