30 research outputs found

    Root reinforcement and slope bioengineering stabilization by Spanish Broom (<i>Spartium junceum</i> L.)

    Get PDF
    The present paper deals with the root system's characteristics of Spanish Broom (<i>Spartium junceum</i> L.), a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1) to investigate the plant's bio-mechanical aspects and 2) to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. <br><br> Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR) was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill) and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. <br><br> Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings). These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. <br><br> Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession

    Evaporation in a Mediterranean environment by energy budget and Penman methods, Lake Baratz, Sardinia, Italy

    Get PDF
    Abstract. In Mediterranean environments, evaporation is a key component of lake water budgets. This applies to Lake Baratz in Sardinia, Italy, a closed lake that almost dried up in 2008 after a succession of years with low seasonal rainfall. We used the energy budget method and Penman's equation to estimate evaporation over Lake Baratz. We measured, using a raft station, water temperature at the surface, at 1, 2, 4, 6 m depth and at the bottom of the lake, as well as air temperature, relative humidity, wind speed, and net radiation over a period of 3 years. We also compared Penman's equation and the energy budget method in two other climatic zones using published data. Our results indicate that mean yearly evaporation over Lake Baratz was 950 mm. On an annual scale, evaporation estimated by Penman's method omitting heat storage as is usually done was 18% higher than by the energy budget method that included heat storage, with monthly differences ranging between −38 and +60%. Including the heat storage term in Penman's equation changed the monthly values but did not change the yearly value significantly. Solar radiation and heat storage were found to be the most important energy fluxes to and from the lake and had the greatest effect on evaporation rates for the energy budget method. The bias between the two methods has a seasonal cycle due to the storage and release of energy from the lake. Energy advected to and from the lake by precipitation, surface water and ground water had minor effect on evaporation rates. Lake Baratz, like other lakes in a Mediterranean environment, is particularly sensitive to the summer hot and dry climate. In contrast, we found that rates of evaporation estimated from Penman and the energy budget methods over tropical African lakes were nearly constant over the entire year and the difference between the two methods smaller. Difference between the two methods for North American lakes is also smaller probably owing to the ice-cover season and to lower radiation and lower temperatures during summer

    Comparing the Hydraulic Properties of Forested and Grassed Soils on an Experimental Hillslope in a Mediterranean Environment

    Get PDF
    AbstractThis experimental research compares the physical and hydraulic properties of two adjacent soils, one covered with a native forest of Mediterranean maquis, and the other with spontaneous grass. The latter replaced the previous natural forest. The aim is to quantify the significant differences in the soil properties caused by the removal of the natural vegetation. Although the soil texture was similar in the different land uses, the soil under the forest had a higher organic matter content, a lower apparent density and a higher water content at saturation than the grassed soil. The analysis of the water retention characteristics indicated that the retained water content of the forest soil exceeded that of the grassed soil in the range from saturation to -50cm of water tension. This suggests that changing the land use altered the soil pore structure within this range. The hydraulic conductivity of the forest soil exceeded that of the grassed soil at water tensions of -10, -5 and -3cm. Conversely the hydraulic conductivity of the grassed soil was similar to that of the forest soil at -1cm of water tension and at saturation. This result was probably due to the hydraulic activation of the desiccation cracks in the grassed soil. This increased the amount of infiltrated water in saturated and near-saturated soil conditions.This work shows that changes in land use have an unfavorable impact on the physical and hydraulic properties of the soil. Soil covered with grass is more vulnerability to water erosion than that under forest, and there is likely to be general worsening of flow regimes

    SCHEMA SPERIMENTALE PER LA STIMA DELLA CONDUCIBILITÀ IDRAULICA LATERALE ALLA SCALA DI VERSANTE

    Get PDF
    La conducibilità idraulica alla saturazione, KS, è un parametro fondamentale per la simulazione del flusso idrico nel suolo. La memoria illustra un approccio sperimentale per la stima della KS laterale alla scala di versante. La metodologia proposta è stata applicata in due aree contigue ricoperte, rispettivamente, da macchia mediterranea e prato. Sono stati registrati i livelli di falda e i deflussi idrici sottosuperficiali, e queste misure sono state usate per il calcolo della KS del suolo tramite l’equazione di Darcy. Il monitoraggio è stato effettuato durante il periodo piovoso compreso tra gennaio e giugno 2014. In aprile, inoltre, sono state eseguite prove di pioggia artificiale con intensità di 30 e 70 mm h-1. Durante le precipitazioni naturali, il valore massimo di KS stimato nel prato è stato di 2870 mm h-1, mentre è stato pari a 2400 mm h-1 nel corso delle prove di saturazione artificiale. Il valore massimo di KS pari 4000 mm h-1 è stato ottenuto, nella macchia, durante le prove di pioggia artificiale. Per contro, valori minori di KS sono stati ottenuti durante le piogge naturali a causa delle basse portate sottosuperficiali registrate. La metodologia proposta è risultata idonea per la stima di valori della conducibilità idraulica rappresentativi per le aree di interesse. Tali informazioni potranno garantire una maggiore attendibilità della modellizzazione dei processi idrologici a scala di versante e di bacino

    Large-scale lateral saturated soil hydraulic conductivity as a metric for the connectivity of subsurface flow paths at hillslope scale

    Get PDF
    Lateral saturated soil hydraulic conductivity, Ks,l, is the soil property governing subsurface water transfer in hillslopes, and the key parameter in many numerical models simulating hydrological processes at the hillslope and catchment scales. Likewise, the hydrological connectivity of the lateral flow paths plays a significant role in determining the rate of the subsurface flow at various spatial scales. This study investigates the relationship between Ks,l and hydrological connectivity at the hillslope spatial scale. Ks,l was determined by the subsurface flow rates intercepted by drains and water table depths observed in a well network. The hydrological connectivity was evaluated by the synchronicity among water table peaks, and between these and the peaks of the drained flow. Rainfall and soil moisture were used to investigate the influence of the transient hydrological soil condition on connectivity and Ks,l. As the synchronicity of the water table response between wells increased, the lag times between the peaks of water levels and those of the drained subsurface flow decreased. Moreover, the most synchronic water table rises determined the highest drainage rates. The relationships between Ks,l and water table depths were highly non-linear, with a sharp increase in the values for water table levels close to the soil surface. Estimated Ks,l values for the full saturated soil were in the order of thousands of mm h−1, suggesting the activation of macropores in the root zone. The Ks,l values determined at the peak of the drainage events were correlated with the indicators of synchronicity. The sum of cumulative rainfall and antecedent soil moisture was correlated with the connectivity indicators and Ks,l. We suggest that, for simulating realistic processes at the hillslope scale, the hydrological connectivity could be implicitly considered in hydrological modelling through an evaluation of Ks,l at the same spatial scale

    Root reinforcement dynamics in subalpine spruce forests following timber harvest: A case study in Canton Schwyz, Switzerland

    Get PDF
    Root reinforcement is a key factor when dealing with slope stability problems and is an important quantitative criterion for the evaluation of the protective function of forests against shallow landslides, as well as for the adoption of appropriate practices in protection forest management. Although many models have been developed to estimate root reinforcement, a reliable quantification that considers both its spatial and temporal variability still remains a challenge. This work aims to extend the understanding of the long term spatial and temporal dynamics of root reinforcement after forest harvest in subalpine spruce forests by supplying new experimental data and applying a state-of-the-art model.We estimated root reinforcement decay 5, 10 and 15 years after timber had been harvested in spruce stands in a small catchment in the Swiss Alps. We collected root distribution data at different distances from the trees and calibrated and validated a root distribution model (RootDis). To estimate root mechanical properties, we tested roots up to 12 mm diameter in the field, and computed root reinforcement for each case study with the Root Bundle Model. Finally, we developed a new model for the estimation of root reinforcement decay, based on the observed change in root distribution after felling and on the decay of the root pullout force. The final result is a model for the spatial-temporal prediction of root reinforcement heterogeneity and dynamics in subalpine spruce forest stands. Five year old harvested spruce forest in the climatic conditions of the study area provides 40% of the root reinforcement of live forest, while 15 years old harvested forest provides no reinforcement at all. Shrub species and natural regeneration could guarantee almost the 30% of the root reinforcement of a live forest after 15 years from cutting. Additional work is now required to further validate the model and implement these results in a slope stability analysis

    A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration

    Get PDF
    Satellite remote sensing-based surface energy balance (SEB) techniques have emerged as useful tools for quantifying spatialized actual evapotranspiration at various temporal and spatial scales. However, discontinuous data acquisitions and/or gaps in image acquisition due to cloud cover can limit the applicability of satellite remote sensing (RS) in agriculture water management where continuous time series of daily crop actual evapotranspiration (ETc act) are more valued. The aim of the research is to construct continuous time series of daily ETc act starting from temporal estimates of actual evapotranspiration obtained by SEB modelling (ETa eb) on Landsat-TM images. SEBAL model was integrated with the FAO 56 evaporation model, RS-retrieved vegetative biomass dynamics (by NDVI) and on-field measurements of soil moisture and potential evapotranspiration. The procedure was validated by an eddy covariance tower on a vineyard with partial soil coverage in the south of Sardinia Island, Italy. The integrated modeling approach showed a good reproduction of the time series dynamics of observed ETc act (R2 =0.71, MAE=0.54 mm d-1, RMSE=0.73 mm d-1). A daily and a cumulative monthly temporal analysis showed the importance of integrating parameters that capture changes in the soil-plant-atmosphere (SPA) continuum between Landsat acquisitions. The comparison with daily ETc act obtained by the referenced ET fraction (ETrF) method that considers only weather variability (by ETo) confirmed the lead of the proposed procedure in the spring/early summer periods when vegetation biomass changes and soil water evaporation have a significant weight in the ET process. The applied modelling approach was also robust in constructing the missing ETc act data under scenarios of limited cloud-free Landsat acquisitions. The presented integrated approach has a great potential for the near real time monitoring and scheduling of irrigation practices. Further testing of this approach with diverse dataset and the integration with the soil water modeling is to be analyzed in future work
    corecore