86 research outputs found

    Anisotropic magneto-Coulomb effect versus spin accumulation in a ferromagnetic single-electron device

    Full text link
    We investigate the magneto-transport characteristics of nanospintronics single-electron devices. The devices consist of single non-magnetic nano-objects (nanometer size nanoparticles of Al or Cu) connected to Co ferromagnetic leads. The comparison with simulations allows us attribute the observed magnetoresistance to either spin accumulation or anisotropic magneto-Coulomb effect (AMC), two effects with very different origins. The fact that the two effects are observed in similar samples demonstrates that a careful analysis of Coulomb blockade and magnetoresistance behaviors is necessary in order to discriminate them in magnetic single-electron devices. As a tool for further studies, we propose a simple way to determine if spin transport or AMC effect dominates from the Coulomb blockade I-V curves of the spintronics device

    Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3

    Full text link
    We have analyzed the morphology of ferroelectric domains in very thin films of multiferroic BiFeO3. Unlike the more common stripe domains observed in thicker films BiFeO3 or in other ferroics, the domains tend not to be straight, but irregular in shape, with significant domain wall roughening leading to a fractal dimensionality. Also contrary to what is usually observed in other ferroics, the domain size appears not to scale as the square root of the film thickness. A model is proposed in which the observed domain size as a function of film thickness can be directly linked to the fractal dimension of the domains.Comment: 4 pages, 3 figure

    Shear effects in lateral piezoresponse force microscopy at 180∘^\circ ferroelectric domain walls

    Full text link
    In studies using piezoresponse force microscopy, we observe a non-zero lateral piezoresponse at 180∘^\circ domain walls in out-of-plane polarized, c-axis-oriented tetragonal ferroelectric Pb(Zr0.2_{0.2}Ti0.8_{0.8})O3_3 epitaxial thin films. We attribute these observations to a shear strain effect linked to the sign change of the d33d_{33} piezoelectric coefficient through the domain wall, in agreement with theoretical predictions. We show that in monoclinically distorted tetragonal BiFeO3_3 films, this effect is superimposed on the lateral piezoresponse due to actual in-plane polarization, and has to be taken into account in order to correctly interpret the ferroelectric domain configuration.Comment: 4 pages, 3 figure

    Spin injection in a single metallic nanoparticle: a step towards nanospintronics

    Full text link
    We have fabricated nanometer sized magnetic tunnel junctions using a new nanoindentation technique in order to study the transport properties of a single metallic nanoparticle. Coulomb blockade effects show clear evidence for single electron tunneling through a single 2.5 nm Au cluster. The observed magnetoresistance is the signature of spin conservation during the transport process through a non magnetic cluster.Comment: 3 page

    Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films

    Full text link
    We report on the functionalization of multiferroic BiFeO3 epitaxial films for spintronics. A first example is provided by the use of ultrathin layers of BiFeO3 as tunnel barriers in magnetic tunnel junctions with La2/3Sr1/3MnO3 and Co electrodes. In such structures, a positive tunnel magnetoresistance up to 30% is obtained at low temperature. A second example is the exploitation of the antiferromagnetic spin structure of a BiFeO3 film to induce a sizeable (~60 Oe) exchange bias on a ferromagnetic film of CoFeB, at room temperature. Remarkably, the exchange bias effect is robust upon magnetic field cycling, with no indications of training.Comment: 15 pages, 4 figure

    Room temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals

    Full text link
    From an experimental point of view, room temperature ferroelectricity in BiFeO3 is raising many questions. Electric measurements made a long time ago on solid-solutions of BiFeO3 with Pb(Ti,Zr)O3 indicate that a spontaneous electric polarization exists in BiFeO3 below the Curie temperature TC=1143K. Yet in most reported works, the synthesised samples are too conductive at room temperature to get a clear polarization loop in the bulk without any effects of extrinsic physical or chemical parameters. Surprisingly, up to now there has been no report of a P(E) (polarization versus electric field) loop at room temperature on single crystals of BiFeO3. We describe here our procedure to synthesize ceramics and to grow good quality sizeable single crystals by a flux method. We demonstrate that BiFeO3 is indeed ferroelectric at room-temperature through evidence by Piezoresponse Force Microscopy and P(E) loops. The polarization is found to be large, around 60 microC/cm2, a value that has only been reached in thin films. Magnetic measurements using a SQUID magnetometer and Mossbauer spectroscopy are also presented. The latter confirms the results of NMR measurements concerning the anisotropy of the hyperfine field attributed to the magnetic cycloidal structure.Comment: 27 pages, 12 figure
    • 

    corecore