1,077 research outputs found

    Verwey transition in Fe3_{3}O4_{4} at high pressure: quantum critical behavior at the onset of metallization

    Full text link
    We provide evidence for the existence of a {\em quantum critical point} at the metallization of magnetite Fe3_{3}O4_{4} at an applied pressure of pc8p_{c} \approx 8 GPa. We show that the present ac magnetic susceptibility data support earlier resistivity data. The Verwey temperature scales with pressure TV(1p/pc)νT_{V}\sim (1-p/p_{c})^{\nu}, with ν1/3\nu\sim 1/3. The resistivity data shows a temperature dependence ρ(T)=ρ0+ATn\rho(T)=\rho_{0}+AT^{n}, with n3n\simeq 3 above and 2.5 at the critical pressure, respectively. This difference in nn with pressure is a sign of critical behavior at pcp_{c}. The magnetic susceptibility is smooth near the critical pressure, both at the Verwey transition and near the ferroelectric anomaly. A comparison with the critical behavior observed in the Mott-Hubbard and related systems is made.Comment: 5 pages, 5 figure

    Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO

    Get PDF
    Creep motion of magnetic domain wall (DW), thermally activated DW dynamics under subthreshold driving forces, is a paradigm to understand the interaction between driven interfaces and applied external forces. Previous investigation has shown that DW in a metallic system interacts differently with current and magnetic field, manifesting itself as different universality classes for the creep motion. In this article, we first review the experimental determination of the universality classes for current- and field-driven DW creeps in a Ta/CoFeB/MgO wire, and then elucidate the underlying factors governing the obtained results. We show that the nature of torque arising from current in association with DW configuration determines universality class for the current-induced creep in this system. We also discuss the correlation between the field-induced DW creep characteristics and structure observed by a transmission electron microscope. The observed results are expected to provide a deeper understanding for physics of DW motion in various magnetic materials

    Recuperação e sobrevivência de Bradyrhizobium em sementes de soja tratadas com fungicidas e inseticidas.

    Get PDF
    O processo de fixação biológica do nitrogênio (FBN) representa um componente essencial para a viabilidade econômica da cultura da soja. No entanto, para um processo eficiente, um número mínimo de células viáveis de Bradyrhizobium deve estar presente para o estabelecimento da simbiose e o uso concomitante de produtos químicos, como inseticidas e fungicidas, pode comprometer a viabilidade das células. Neste estudo, foram avaliadas novas combinações de inoculantes e polímeros na presença de tratamento de sementes com fungicidas e inseticidas, em tratamento manual ou industrial. Foi constatado que novas formulações e aplicações de produtos nas sementes podem permitir a pré-inoculação por até 4 dias, considerando a sobrevivência de pelo menos 10 5 células/semente

    DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities

    Get PDF
    Stylophora pistillata is a widely used coral “lab-rat” species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16–24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Guiding Diamond Spin Qubit Growth with Computational Methods

    Full text link
    The nitrogen vacancy (NV) center in diamond, a well-studied, optically active spin defect, is the prototypical system in many state of the art quantum sensing and communication applications. In addition to the enticing properties intrinsic to the NV center, its diamond host's nuclear and electronic spin baths can be leveraged as resources for quantum information, rather than considered solely as sources of decoherence. However, current synthesis approaches result in stochastic defect spin positions, reducing the technology's potential for deterministic control and yield of NV-spin bath systems, as well as scalability and integration with other technologies. Here, we demonstrate the use of theoretical calculations of electronic central spin decoherence as an integral part of an NV-spin bath synthesis workflow, providing a path forward for the quantitative design of NV center-based quantum sensing systems. We use computationally generated coherence data to characterize the properties of single NV center qubits across relevant growth parameters to find general trends in coherence time distributions dependent on spin bath dimensionality and density. We then build a maximum likelihood estimator with our theoretical model, enabling the characterization of a test sample through NV T2* measurements. Finally, we explore the impact of dimensionality on the yield of strongly coupled electron spin systems. The methods presented herein are general and applicable to other qubit platforms that can be appropriately simulated.Comment: 12 pages, 6 figure

    Ionic Conductivities of Molten CuI and AgI-CuI Mixtures

    Full text link
    Ionic conductivities σ for molten CuI and AgI-CuI mixtures were measured in the temperature ranges of approximately 580-800 and 500-850 °C, respectively. The value of σ for molten CuI in the range is smaller than that for molten CuBr and CuCl. σ for molten AgI-CuI mixtures decreases with increasing CuI-concentration. The activation energies Ea for molten AgI-CuI system were determined from the analysis of temperature dependence of σ by using the by Arrhenius type equation. Ea for molten AgI-CuI gradually increase with increasing CuIconcentration
    corecore