513 research outputs found
Charge Segregation, Cluster Spin-Glass and Superconductivity in La1.94Sr0.06CuO4
A 63Cu and 139La NMR/NQR study of superconducting (Tc=7 K) La1.94Sr0.06CuO4
single crystal is reported. Coexistence of spin-glass and superconducting
phases is found below ~5 K from 139La NMR relaxation. 63Cu and 139La NMR
spectra show that, upon cooling, CuO2 planes progressively separate into two
magnetic phases, one of them having enhanced antiferromagnetic correlations.
These results establish the AF-cluster nature of the spin-glass. We discuss how
this phase can be related to the microsegregation of mobile holes and to the
possible pinning of charge-stripes.Comment: 4 pages. Modified manuscript with clarification
Spin dynamics and antiferromagnetic order in PrBa2Cu4O8 studied by Cu nuclear respnance
Results of the nuclear resonance experiments for the planar Cu sites in
PrBa2Cu4O8 are presented. The NMR spectrum at 1.5 K in zero magnetic field
revealed an internal field of 6.1 T, providing evidence for an
antiferromagnetic order of the planar Cu spins. This confirms that the CuO2
planes are insulating, therefore, the metallic conduction in this material is
entirely due to the one-dimensional zigzag Cu2O2 chains. The results of the
spin-lattice relaxation rates measured by zero field NQR above 245 K in the
paramagnetic state are explained by the theory for a Heisenberg model on a
square lattice.Comment: 4 pages, 2 figure
Nonbonding oxygen holes and spinless scenario of magnetic response in doped cuprates
Both theoretical considerations and experimental data point to a more
complicated nature of the valence hole states in doped cuprates than it is
predicted by Zhang-Rice model. Actually, we deal with a competition of
conventional hybrid Cu 3d-O 2p state and purely
oxygen nonbonding state with symmetry. The latter
reveals a non-quenched Ising-like orbital moment that gives rise to a novel
spinless purely oxygen scenario of the magnetic response in doped cuprates with
the oxygen localized orbital magnetic moments of the order of tenths of Bohr
magneton. We consider the mechanism of Cu-O 2p transferred orbital
hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p
semicore orbitals. Quantitative estimates point to a large magnitude of the
respective contributions both to local field and electric field gradient, and
their correlated character.Comment: 7 pages, 1 figur
Nuclear Spin Relaxation in Hole Doped Two-Leg Ladders
The nuclear spin-lattice relaxation rate () has been measured in the
single crystals of hole doped two-leg ladder compounds
SrCaCuO and in the undoped parent material
LaCaCuO. Comparison of at the Cu and the two
distinct oxygen sites revealed that the major spectral weight of low frequency
spin fluctuations is located near for most of the
temperature and doping ranges investigated. Remarkable difference in the
temperature dependence of for the two oxygen sites in the heavily doped
=12 sample revealed reduction of singlet correlations between two legs in
place of growing antiferromagnetic correlations along the leg direction with
increasing temperature. Such behavior is most likely caused by the dissociation
of bound hole pairs.Comment: 4 pages. to appear in J. Phys. Soc. Jpn. Vol. 6
Carbon emission from urban passenger transportation in Beijing
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission
Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3
Heisenberg interactions are ubiquitous in magnetic materials and have been
prevailing in modeling and designing quantum magnets. Bond-directional
interactions offer a novel alternative to Heisenberg exchange and provide the
building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as
its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential
realizations of the Kitaev model, and their reported magnetic behaviors may be
interpreted within the Kitaev framework. However, the extent of their relevance
to the Kitaev model remains unclear, as evidence for bond-directional
interactions remains indirect or conjectural. Here, we present direct evidence
for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and
show that they lead to strong magnetic frustration. Diffuse magnetic x-ray
scattering reveals broken spin-rotational symmetry even above Neel temperature,
with the three spin components exhibiting nano-scale correlations along
distinct crystallographic directions. This spin-space and real-space
entanglement directly manifests the bond-directional interactions, provides the
missing link to Kitaev physics in honeycomb iridates, and establishes a new
design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015
Indications of Spin-Charge Separation at Short Distance and Stripe Formation in the Extended t-J Model on Ladders and Planes
The recently discussed tendency of holes to generate nontrivial spin
environments in the extended two-dimensional t-J model (G. Martins, R. Eder,
and E. Dagotto, Phys. Rev. B{\bf 60}, R3716 (1999)) is here investigated using
computational techniques applied to ladders with several number of legs. This
tendency is studied also with the help of analytic spin-polaron approaches
directly in two dimensions. Our main result is that the presence of robust
antiferromagnetic correlations between spins located at both sides of a hole
either along the x or y axis, observed before numerically on square clusters,
is also found using ladders, as well as applying techniques based on a
string-basis expansion. This so-called "across-the-hole" nontrivial structure
exists even in the two-leg spin-gapped ladder system, and leads to an effective
reduction in dimensionality and spin-charge separation at short-distances, with
a concomitant drastic reduction in the quasiparticle (QP) weight Z. In general,
it appears that holes tend to induce one-dimensional-like spin arrangements to
improve their mobility. Using ladders it is also shown that the very small
J/t0.1 regime of the standard t-J model may be more realistic than
anticipated in previous investigations, since such regime shares several
properties with those found in the extended model at realistic couplings.
Another goal of the present article is to provide additional information on the
recently discussed tendencies to stripe formation and spin incommensurability
reported for the extended t-J model.Comment: 14 pages, 21 figures, LateX, submited to Phys. Rev.
Spatiotemporal Analysis of Competition Between Subways and Taxis Based on Multi-Source Data
Excessive competition between taxis and subways has eroded the advantages of public transit systems such as worsening road traffic congestion and environment. This study aims to improve the appeal of subways by a comprehensive understating of competition between taxis and subways. We investigate competitive relationship between these two transportation modes by using empirical multi-source data. First, non-negative matrix factorization (NMF) algorithm is used to discover the spatiotemporal travel patterns of subway-competing taxi users (SCTUs). Second, we propose a new index to quantify the competitiveness of subways based on the actual mode choices results. Then, we reveal the spatiotemporal heterogeneity of competitiveness from perspective of subway network. Taking Beijing, China, for a case study, we extract a week's worth of GPS records on taxi trajectory and smartcard data of subways. Subway-competing taxi trips (SCTTs) account for the largest proportion of the total taxi trips. As a result, three basic patterns are found in SCTTs. Subway station pairs with high and less competition are divided according to competitiveness index. Among low competition station pairs, three spatial structures are observed, including low-competition collinearity corridors, radial communities, and links between paralleled subway lines. Combining the distribution results of travel pattern and competitiveness degree, short-term and long-term planning suggestions are recommended respectively for station pairs with high demand but low competitiveness and those with low demand and low competitiveness. These findings provide useful insights into promoting more effective and sensitive policies to balance the competition and attract more taxi passengers to the subway system
Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making
The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.National Institutes of Health (U.S.) (Javits Merit Grant R01 NS025529)United States. Office of Naval Research (N000140710903)National Parkinson Foundation (U.S.) (Lynn Diamond Fellowship
- …
