1,573 research outputs found

    Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter α\alpha

    Full text link
    We present several conjectures on the behavior and clustering properties of Jack polynomials at \emph{negative} parameter α=−k+1r−1\alpha=-\frac{k+1}{r-1}, of partitions that violate the (k,r,N)(k,r,N) admissibility rule of Feigin \emph{et. al.} [\onlinecite{feigin2002}]. We find that "highest weight" Jack polynomials of specific partitions represent the minimum degree polynomials in NN variables that vanish when ss distinct clusters of k+1k+1 particles are formed, with ss and kk positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.Comment: 12 page

    Intertwining operator for AG2AG_2 Calogero-Moser-Sutherland system

    Get PDF
    We consider generalised Calogero-Moser-Sutherland quantum Hamiltonian HH associated with a configuration of vectors AG2AG_2 on the plane which is a union of A2A_2 and G2G_2 root systems. The Hamiltonian HH depends on one parameter. We find an intertwining operator between HH and the Calogero-Moser-Sutherland Hamiltonian for the root system G2G_2. This gives a quantum integral for HH of order 6 in an explicit form thus establishing integrability of HH.Comment: 24 page

    Gaudin model and Deligne's category

    Full text link
    We show that the construction of the higher Gaudin Hamiltonians associated to the Lie algebra gln\mathfrak{gl}_{n} admits an interpolation to any complex nn. We do this using the Deligne's category Dt\mathcal{D}_{t}, which is a formal way to define the category of finite-dimensional representations of the group GLnGL_{n}, when nn is not necessarily a natural number. We also obtain interpolations to any complex nn of the no-monodromy conditions on a space of differential operators of order nn, which are considered to be a modern form of the Bethe ansatz equations. We prove that the relations in the algebra of higher Gaudin Hamiltonians for complex nn are generated by our interpolations of the no-monodromy conditions. Our constructions allow us to define what it means for a pseudo-deifferential operator to have no monodromy. Motivated by the Bethe ansatz conjecture for the Gaudin model associated with the Lie superalgebra gln∣n′\mathfrak{gl}_{n\vert n'}, we show that a ratio of monodromy-free differential operators is a pseudo-differential operator without monodromy.Comment: 35 page

    Generalized Calogero-Moser systems from rational Cherednik algebras

    Get PDF
    We consider ideals of polynomials vanishing on the W-orbits of the intersections of mirrors of a finite reflection group W. We determine all such ideals which are invariant under the action of the corresponding rational Cherednik algebra hence form submodules in the polynomial module. We show that a quantum integrable system can be defined for every such ideal for a real reflection group W. This leads to known and new integrable systems of Calogero-Moser type which we explicitly specify. In the case of classical Coxeter groups we also obtain generalized Calogero-Moser systems with added quadratic potential.Comment: 36 pages; the main change is an improvement of section 7 so that it now deals with an arbitrary complex reflection group; Selecta Math, 201

    Gaudin Model, Bethe Ansatz and Critical Level

    Full text link
    We propose a new method of diagonalization of hamiltonians of the Gaudin model associated to an arbitrary simple Lie algebra, which is based on Wakimoto modules over affine algebras at the critical level. We construct eigenvectors of these hamiltonians by restricting certain invariant functionals on tensor products of Wakimoto modules. In conformal field theory language, the eigenvectors are given by certain bosonic correlation functions. Analogues of Bethe ansatz equations naturally appear as Kac-Kazhdan type equations on the existence of certain singular vectors in Wakimoto modules. We use this construction to expalain a connection between Gaudin's model and correlation functions of WZNW models.Comment: 40 pages, postscript-file (references added and corrected

    Form factors of descendant operators: Free field construction and reflection relations

    Full text link
    The free field representation for form factors in the sinh-Gordon model and the sine-Gordon model in the breather sector is modified to describe the form factors of descendant operators, which are obtained from the exponential ones, \e^{\i\alpha\phi}, by means of the action of the Heisenberg algebra associated to the field ϕ(x)\phi(x). As a check of the validity of the construction we count the numbers of operators defined by the form factors at each level in each chiral sector. Another check is related to the so called reflection relations, which identify in the breather sector the descendants of the exponential fields \e^{\i\alpha\phi} and \e^{\i(2\alpha_0-\alpha)\phi} for generic values of α\alpha. We prove the operators defined by the obtained families of form factors to satisfy such reflection relations. A generalization of the construction for form factors to the kink sector is also proposed.Comment: 29 pages; v2: minor corrections, some references added; v3: minor corrections; v4,v5: misprints corrected; v6: minor mistake correcte

    Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals

    Full text link
    The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is invariant under the action of certain differential operators which include half the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit clusters of size at most k: they vanish when k+1 of their variables are identified, and they do not vanish when only k of them are identified. We generalize most of these properties to superspace using orthogonal eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular, we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N commuting variables and N anticommuting variables. We prove that the ideal {\mathcal I}^{(k,r)}_N is stable with respect to the action of the negative-half of the super-Virasoro algebra. In addition, we show that the Jack superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting variables are equal, and conjecture that they do not vanish when only k of them are identified. This allows us to conclude that the standard Jack polynomials with prescribed symmetry should satisfy similar clustering properties. Finally, we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for the subspace of symmetric superpolynomials in N variables that vanish when k+1 commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we present exceptions to an often made statement concerning the clustering property of the ordinary Jack polynomials for (k,r,N)-admissible partitions (see Footnote 2); 2) Conjecture 14 is substantiated with the extensive computational evidence presented in the new appendix C; 3) the various tests supporting Conjecture 16 are reporte

    Macdonald polynomials in superspace: conjectural definition and positivity conjectures

    Full text link
    We introduce a conjectural construction for an extension to superspace of the Macdonald polynomials. The construction, which depends on certain orthogonality and triangularity relations, is tested for high degrees. We conjecture a simple form for the norm of the Macdonald polynomials in superspace, and a rather non-trivial expression for their evaluation. We study the limiting cases q=0 and q=\infty, which lead to two families of Hall-Littlewood polynomials in superspace. We also find that the Macdonald polynomials in superspace evaluated at q=t=0 or q=t=\infty seem to generalize naturally the Schur functions. In particular, their expansion coefficients in the corresponding Hall-Littlewood bases appear to be polynomials in t with nonnegative integer coefficients. More strikingly, we formulate a generalization of the Macdonald positivity conjecture to superspace: the expansion coefficients of the Macdonald superpolynomials expanded into a modified version of the Schur superpolynomial basis (the q=t=0 family) are polynomials in q and t with nonnegative integer coefficients.Comment: 18 page

    Mirror symmetry in two steps: A-I-B

    Full text link
    We suggest an interpretation of mirror symmetry for toric varieties via an equivalence of two conformal field theories. The first theory is the twisted sigma model of a toric variety in the infinite volume limit (the A-model). The second theory is an intermediate model, which we call the I-model. The equivalence between the A-model and the I-model is achieved by realizing the former as a deformation of a linear sigma model with a complex torus as the target and then applying to it a version of the T-duality. On the other hand, the I-model is closely related to the twisted Landau-Ginzburg model (the B-model) that is mirror dual to the A-model. Thus, the mirror symmetry is realized in two steps, via the I-model. In particular, we obtain a natural interpretation of the superpotential of the Landau-Ginzburg model as the sum of terms corresponding to the components of a divisor in the toric variety. We also relate the cohomology of the supercharges of the I-model to the chiral de Rham complex and the quantum cohomology of the underlying toric variety.Comment: 50 pages; revised versio
    • …
    corecore