We introduce a conjectural construction for an extension to superspace of the
Macdonald polynomials. The construction, which depends on certain orthogonality
and triangularity relations, is tested for high degrees. We conjecture a simple
form for the norm of the Macdonald polynomials in superspace, and a rather
non-trivial expression for their evaluation. We study the limiting cases q=0
and q=\infty, which lead to two families of Hall-Littlewood polynomials in
superspace. We also find that the Macdonald polynomials in superspace evaluated
at q=t=0 or q=t=\infty seem to generalize naturally the Schur functions. In
particular, their expansion coefficients in the corresponding Hall-Littlewood
bases appear to be polynomials in t with nonnegative integer coefficients. More
strikingly, we formulate a generalization of the Macdonald positivity
conjecture to superspace: the expansion coefficients of the Macdonald
superpolynomials expanded into a modified version of the Schur superpolynomial
basis (the q=t=0 family) are polynomials in q and t with nonnegative integer
coefficients.Comment: 18 page