1,120 research outputs found

    Fermion Production in the Background of Minkowski Space Classical Solutions in Spontaneously Broken Gauge Theory

    Get PDF
    We investigate fermion production in the background of Minkowski space solutions to the equations of motion of SU(2)SU(2) gauge theory spontaneously broken via the Higgs mechanism. First, we attempt to evaluate the topological charge QQ of the solutions. We find that for solutions QQ is not well-defined as an integral over all space-time. Solutions can profitably be characterized by the (integer-valued) change in Higgs winding number ΔNH\Delta N_H. We show that solutions which dissipate at early and late times and which have nonzero ΔNH\Delta N_H must have at least the sphaleron energy. We show that if we couple a quantized massive chiral fermion to a classical background given by a solution, the number of fermions produced is ΔNH\Delta N_H, and is not related to QQ.Comment: Version to be published. Argument showing that the topological charge of solutions is undefined has been strengthened and clarified. Conclusions unchange

    Robustness of adiabatic quantum computation

    Get PDF
    We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.Comment: 11 pages, 5 figures, REVTe

    Gauge Invariant Variables for Spontaneously Broken SU(2) Gauge Theory in the Spherical Ansatz

    Get PDF
    We describe classical solutions to the Minkowski space equations of motion of SU(2) gauge theory coupled to a Higgs field in the spatial spherical ansatz. We show how to reduce the equations to four equations for four gauge invariant degrees of freedom which correspond to the massive gauge bosons and the Higgs particle. The solutions typically dissipate at very early and late times. To describe the solutions at early and late times, we linearize and decouple the equations of motion, all the while working only with gauge invariant variables. We express the change in Higgs winding of a solution in terms of gauge invariant variables.Comment: latex, 19 pages, no figures (minor changes to text; reference added

    Unforgeable Noise-Tolerant Quantum Tokens

    Get PDF
    The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of "quantum money". A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure "quantum money"-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.Comment: 18 pages, 5 figure

    Towards Designing a Knowledge Sharing System for Higher Learning Institutions in the UAE Based on the Social Feature Framework

    Get PDF
    Numerous ICT instruments, such as communication tools, social media platforms, and collaborative software, bolster and facilitate knowledge sharing activities. Determining the vital success factors for knowledge sharing within its unique context is argued to be essential before implementing it. Therefore, it is imperative to define domain-specific critical success factors when envisioning the design of a knowledge sharing system. This research paper introduces the blueprint for an Academic Knowledge Sharing System (AKSS), rooted in an essential success framework tailored to knowledge sharing to deploy within an academic institution. In this regard, an extensive exploration of the relevant literature led to the formulation of the research hypothesis that guided the construction of a questionnaire targeting university students through the online platform Pollfish, utilizing a quantitative approach to investigate, while the data collected was analyzed using SPSS version 22. The study unveils critical factors, including encouragement, acknowledgment, a reward system, fostering a knowledge sharing culture, and leading by example, contributing to developing the knowledge sharing framework. Furthermore, the study illustrates how this framework seamlessly integrated into the design, implementation, and execution of the Academic Knowledge Sharing System (AKSS)

    Spherical Shells of Classical Gauge Field and their Topological Charge as a Perturbative Expansion

    Full text link
    We consider the classical equations of motion of SU(2)SU(2) gauge theory, without a Higgs field, in Minkowski space. We work in the spherical ansatz and develop a perturbative expansion in the coupling constant gg for solutions which in the far past look like freely propagating spherical shells. The topological charge QQ of these solutions is typically non-integer. We then show that QQ can be expressed as a power series expansion in gg which can be nonzero at finite order. We give an explicit analytic calculation of the order g5g^5 contribution to QQ for specific initial pulses. We discuss the relation between our findings and anomalous fermion number violation, and speculate on the physical implications of our results.Comment: 18 pages in REVTE

    Modeling the strangeness content of hadronic matter

    Get PDF
    The strangeness content of hadronic matter is studied in a string-flip model that reproduces various aspects of the QCD-inspired phenomenology, such as quark clustering at low density and color deconfinement at high density, while avoiding long range van der Waals forces. Hadronic matter is modeled in terms of its quark constituents by taking into account its internal flavor (u,d,s) and color (red, blue, green) degrees of freedom. Variational Monte-Carlo simulations in three spatial dimensions are performed for the ground-state energy of the system. The onset of the transition to strange matter is found to be influenced by weak, yet not negligible, clustering correlations. The phase diagram of the system displays an interesting structure containing both continuous and discontinuous phase transitions. Strange matter is found to be absolutely stable in the model.Comment: 14 pages, 1 table, 8 eps figures, revtex. Submitted to Phys. Rev. C, Presented at INPC2001 Berkeley, Ca. july 29-Aug

    Correlations around an interface

    Full text link
    We compute one-loop correlation functions for the fluctuations of an interface using a field theory model. We obtain them from Feynman diagrams drawn with a propagator which is the inverse of the Hamiltonian of a Poschl-Teller problem. We derive an expression for the propagator in terms of elementary functions, show that it corresponds to the usual spectral sum, and use it to calculate quantities such as the surface tension and interface profile in two and three spatial dimensions. The three-dimensional quantities are rederived in a simple, unified manner, whereas those in two dimensions extend the existing literature, and are applicable to thin films. In addition, we compute the one-loop self-energy, which may be extracted from experiment, or from Monte Carlo simulations. Our results may be applied in various scenarios, which include fluctuations around topological defects in cosmology, supersymmetric domain walls, Z(N) bubbles in QCD, domain walls in magnetic systems, interfaces separating Bose-Einstein condensates, and interfaces in binary liquid mixtures.Comment: RevTeX, 13 pages, 6 figure

    New excitations in bcc 4^{4}He - an inelastic neutron scattering study

    Full text link
    We report neutron scattering measurements on bcc solid 4^{4}% He. We studied the phonon branches and the recently discovered ''optic-like'' branch along the main crystalline directions. In addition, we discovered another, dispersionless "optic-like'' branch at an energy around 1 meV (∌\sim~11K). The properties of the two "optic-like" branches seem different. Since one expects only 3 acoustic phonon branches in a monoatomic cubic crystal, these new branches must represent different type of excitations. One possible interpretation involves localized excitations unique to a quantum solid.Comment: 4 pages, 3 figures, accepted by PRB, Rapid Communication

    Quantum mechanics gives stability to a Nash equilibrium

    Get PDF
    We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable.Comment: Revised on referee's criticism, submitted to Physical Review
    • 

    corecore