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Notation and External Results. The following definitions and exter-
nal results will be used extensively throughout the proofs and are
included here to provide a self-contained presentation.

Definition 1: A quantum state ¢-design is a probability distribution
over pure quantum states (p;, |w;)) (or (p;, |w;)(w;|)) such that

Yoitwwd® = [ (wiwhedy. isn

i

In other words, a quantum state #-design duplicates the proper-
ties of the unique unitarily invariant Haar measure over quantum
states for all polynomials up to degree t. Alternatively, the dis-
crete average and continuous measure of definition 1 may be
taken over pure density matrices given that they are insensitive
to phases. The equality of the 2¢ leg tensors expressed in defini-
tion 1 is actually exploited by contracting each sides of the equal-
ity with a tensor that is independent of y. By contracting a pair
of legs of the resulting tensor with an identity operator, one
may verify that a (¢ + 1)-design is always a t-design. Indeed,
any polynomial expression in |y){y| with degree at most ¢ can
be expressed by the contraction of (|y){y|)® with a tensor. This
is indeed where the property of ¢-designs is used in practice for
specific polynomials in |y)(wy|.

Claim 1. (3-design over %,) The set of pure states

O = {10). [1). [+), =), | + ). | = i)} [S2]

with equal weights p; = 1/6 constitutes a quantum state 3-design
over %, (1). By abuse of notation, we will also use Q to denote
the associated set of normalized pure density matrices.

The average fidelity for a channel quantifies how well the chan-
nel preserves quantum states.

Definition 2: The average fidelity of a map M is defined as

FOO) = [ uIMOw) ww)dy = éwZeQ(\le(lwﬂwl)w
[S3]

The last expression is not part of the definition but is derived
from the fact that the average fidelity can be expressed as a a
Haar average of a degree 2 polynomial in |y){y| and that Q
is a 3-design (and hence also a two-design).

Throughout the text, boolean values 8 = {True, False} will be
represented as True := 1, False := 0 and the negation b := 1 — b.
We will also use the variable b to denote boolean strings (i.e.,
ordered sequences of values in {0, 1}) with len(b) denoting the
length or number of components of a sequence and #/(b) denoting
the string obtained from removing the last element from b. We
will denote by Pr[e] the probability of an event e and Exp|[v] the
expectation value of an expression v. Note that according to our
convention, if the expression is a boolean formula they may be
used interchangeably.

The relative entropy is a distinguishability measure between
two probability distributions. It will be used extensively (particu-
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larly among binary or Bernoulli distributions) and appears in
the definition of auxiliary results. Let 0 < p, g < 1, by abuse of
notation, we take D(pllg) =pIn+ (1 -p)ln }%z, the relative
entropy between two Bernoulli probability distributions with re-
spective parameters p and g. Note that this definition satisfies
D(pliq) > 2(p - q)*.

The following generalization of the Chernof-Hoeffding bound
derived by Panconesi and Srinivasan (2) provides the same thesis
as a standard Chernoff bound while relaxing the hypothesis to
allow dependent random variables.

Theorem 1. (Generalized Chernof-Hoeffding bound) Let
Xi,..., X, be Boolean {0, 1} random variables, such that for some
8; and every S C{l,...,n}, it holds that Pr[\;csX;] < [licsS:
Then for any vy e€[d,1] we have that Pr[}!, X;>yn] <
e PO with § :=n=' Y15,

A further generalization to real valued random variables
will also be required. This is adapted to our purpose from theo-
rem 3.3 of Impagliazzo and Kabanets (3).

Theorem 2. Let X4, ..., X,, be real valued random variables, with
each X; € [0, 1]. Suppose that there is a 0 < & < 1 s.t, for every
set SC{1,....n}, Exp[[[;esX:] =8l and y s.t. 8 <y <1 and
yn € N. Then we have that Pr[Y, X; > yn] < 2¢"P0II3),

Quantum Tickets (Qtickets). We first provide a rigorous definition of
gtickets and how they are verified. We then proceed to our claims
and the soundness, security, and tightness of our security bound
(accompanied with respective proofs). Namely, we show that
qtickets may be successfully redeemed by an honest holder
achieving a sufficiently good storage fidelity. We then show that
a dishonest holder will have a negligible chance of producing two
qtickets that are accepted by verifiers from a single valid qticket,
even after repeated verification attempts. Finally we show how a
simple counterfeiting strategy has a high probability of producing
two such qtickets if the verification tolerance is set below the
threshold value. As an extension, we consider how our results
generalize to producing multiple identical qtickets.

Definition of qtickets. Each qticket consists of a serial number s
and an N component pure product state p®) = N pl@. For
each serial number s, qticket components p;”’ are chosen uni-
formly at random from Q (the set of pure density matrices of
the 3-design presented in definition 1). This means Igitickets p®
are taken uniformly at random from the set Q = O® (where by
abuse of notation, the elements of Q are density matrices corre-
sponding to the N component pure product states in # =
¥V, with components taken from Q). The verifiers store a da-
tabase containing, for each s, a classical description of p®) kept
secret from ticket holders and the general public. In order to sim-
plify notation, the serial number s associated to individual qtick-
ets will be omitted from now on.

In order to use qtickets, they are transferred to a verification
authority who can either accept or reject them. In both cases,
however, the qticket is not returned, only the binary outcome
of verification. The gticket protocol is additionally parameterized
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by the fraction F, of quantum bits (qubits) that a verification
authority requires to be correct in order for verification to suc-
ceed. In order to verify a submitted qticket p, a full measurement
will be performed in the product basis associated to the original
qticket p and the number of correct outcomes is then counted. If
more than at least F,, N are correct, the (possibly noisy) sub-
mitted qticket p is accepted; otherwise, it is rejected.

For any pure product state p = Q¥ , p; we define a projector
Plc € Z(H o) associated to the subspace of states that would be
accepted if p were a qticket (i.e., states coinciding with p in at
least a fraction Fy, of the qublts) The projector Pl offers a
more abstract interpretation and may be rigorously defined as
follows.

Definition 3: (Acceptance Projector) Given a pure N qubit product
state p = QX p; and a security parameter 0 < F,,) < 1, we de-
fine the acceptance projector

Pz?cc: Z ®bpz+bpr)*

Z b, >leN

where b € {0, 1}V is a boolean string.
By abuse of notation, p; and its orthogonal complement

L:=1, — p; are used as rank 1 projectors in L(%,).

P

Soundness. The soundness result states that even under imperfect
storage and readout fidelity, legitimate gtickets work well as long
as the fidelity loss is not too severe. The completely positive trace
preserving (CPTP) maps M; will be assumed to represent the en-
coding, storage and readout of the i-th qubit component of the
qticket. In this sense, the soundness statement takes place at the
level of single qubits. This is necessarily the case because legiti-
mate qtickets are ruined if a significant fraction of the qubits fail
in a correlated way. Given F; = F(M;), the average fidelity of the
qubit map M;, we define Fy, := N~' 3 F; to be the average qubit
fidelity of the full map M = );M; over all components. The
probability that the “noisy” qticket resulting from this map is
accepted as valid is given by p, (M) = ‘1@ Yoeo Tr[PiccM(p)].

Theorem 3. (Soundness of qtickets) As long as Fey, > Fi,, an honest
holder can successfully redeem qtickets with a probability

(M) > 1 — e NP(FuillFeg)

Proof: Consider the boolean random variables X = (X1, Xnv)
with joint distribution given by

N -

PiLX =6 = i 3 T M) @b+ o). 54
|Q | i=1
peQ

Because M = @), M;, we may recast Eq. S2 as

Pr(X = b] = H > Tr [Mi(pi) (bipi + bipi")] [85]

pi€Q

Because Q is a quantum state two-design over qubit space,
each factor coincides with the definition of the average fidelity
F; of M; if b; =1 and with 1 — F; if b; = 0. Hence the X; are
independent boolean random variables with probability
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Pr[X |=F,. Moreover according to definition 3, we have
|Q| YocoTr[PiccM(p)] = Pr[XY, X; > FiyN]. Because the X;

are independent, a standard Chernof—Hoeffding bound allows
us to conclude.

Security. Consider the probability of producing two tokens, both
passing verification by means of the most general possible trans-
formation, a CPTP map 7, applied on a single genuine qticket.

Definition 4: (Counterfeiting fidelity) We define the average coun-
terfeiting fidelity of a map T € #yp — # 82 as

T .fcc e Seé
pa(T |Q|p§:~) r[( ()] [S6]

Note that definition 4 can also be thought of as N nested averages
over the qubit state 3-design Q of each tensor factor p; of p.

One of our main results states that as long as the verification
threshold F, is set sufficiently high (>5/6), a counterfeiter will
have negligible (exponentially small in N) chances of producing
two verified tokens from a single genuine original.

Theorem 4. (Security of qtickets) For F\, > 5/6 and for any CPTP
map T € #y — %Sz we have that

pa(T) < e~ NPCFa=112/3), [S7]

Most of the work for proving this theorem goes into excluding
the possibility that a nonproduct counterfeiting strategy could
perform significantly better than any product strategy such as per-
forming optimal cloning on each individual qubit. That is, we take
into account the fact that the map T need not factorize with re-
spect to the different components of the qticket. Note also that
D(2F —1]|2/3) =0 precisely for F, =5/6 and is positive
otherwise. Finally, we prove that even if the holder of a gticket
attempts to perform v succesive verification attempts (each time
possibly using information learned from the acceptance/rejection
of previous attempts) the chances of having two or more sub-
mitted gtickets accepted grows by no more than a factor of (}).

Theorem 5. (Security of qtickets with learning) If the holder of a valid
gticket submits v tokens for verification, the probability of having
two or more accepted is upper bounded by

V - —_
Pay = (2)e ND(2Fq~1112/3)

Note that because (3) is a polynomial of degree 2 in v, this
bound still allows for an exponentially large number (in N) of
qticket submissions v, while preserving exponentially good se-

curity.

Proof Outline. We now outline the proof for theorems 4 and 5.
First, the claim in theorem 4 is equated to an equivalent one,
which averages over the set of all pure product states instead of
Q. We then bound the average cloning probability by (2/3)" for
the set of pure product states following the lines of R. F. Werner
(4) for the optimal cloning of pure states. From there, the gen-
eralized Chernoff bound from theorem 1 for dependent random
variables allows us to derive the desired result. The result of the-
orem 5 is obtained from a counting argument relating the security
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of multiple verification attempts with the static counterfeiting
fidelity bound of theorem 4.

Equivalence with Continuous Statement. For the qticket protocol,
drawing each component from a discrete set of states is required
in order to provide an efficient classical description. However,
certain statements are simpler to analyze over the full set of pure
product states. This is the case for the counterfeiting fidelity,
which can also be expressed as a uniform average over all pure
product states.

Lemma 1. (Counterfeiting fidelity) The average counterfeiting fidelity
of a map T can be expressed as

pa(T) = / 4§ Tr(PLL)®2 T (7)) [S8]

where [dp represents N nested integrations on the Haar measure of
qubit components [dp, - [dpy and f=p; @ - @ py is the re-
sulting product state.

Proof: Definition 4 and lemma 1 express p,(7T) as the average of
the same expression over a discrete (respectively continuous) set
of product states. Our claim is that the nested continuous
averages of lemma 1 can be transformed one by one into nested
discrete averages over the 3-design Q, eventually coinciding with
definition 4. To prove this claim using the definition of 3-designs,
we must ensure that, as a function of any tensor factor p; of p, the
expression Tr[(Pf..)®2T(p)] can be expressed as a polynomial of
degree at most 3.

Definition 3 may seem unnecessarily cumbersome, yet it serves
to make explicit that the projector Pk can be expressed as a mul-
tivariable polynomial with total degree N but degree 1 in each of
the tensor factors p; of the qticket p. Inspection of definition 3
allows us to ascertain that the set of monomials summing to
P} is statically defined by F,, and each monomials has degree
at most 1 in each of the tensor components p; of p. Furthermore,
note that regardless of what the multiqubit map T is, its applica-
tion T'(p) has degree 1 on p and hence on every tensor factor p; of
a product state p. Hence, the integrand of lemma 1 is a polyno-
mial of degree at most 3 in each of the qubit components p; of p.
We may hence replace the nested integrals one by one by
averages over Q reaching the expression of definition 4 after
N steps.

Optimal Cloning for Pure Product States. R. F. Werner (4) obtained a
tight upper bound for the average probability of a CPTP map T
producing m clones from n copies of an unknown pure quantum
state |y). Our statement is that if one attempts to clone an N
component pure product state, the optimal cloning probability
is achieved by independently cloning each of the components;
neither generating entanglement nor correlations may help with
the cloning. We present this statement for the case of cloning two
copies from a qubit product state, but the derivation is fully gen-
eralizable.

Lemma 2. (Optimal cloning of pure product states) The average clon-
ing fidelity over N qubit component pure product states of a CPTP
map T is bounded by

/ AT T () < (2/3)N

Proof: One possible derivation of this lemma is by following the
lines of the original proof for optimal cloning of pure states (4).
First one shows that if there is a CPTP map T achieving average
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cloning fidelity F* then there is a covariant CPTP map T*
achieving the same average cloning fidelity. This map can be ex-
plicitly constructed as

*(5) = / dg FOT(F5ENTe. [59]

where the integral [dg averages over all possible local rotations §
on N subsystems. This covariant map achieves exactly the same
cloning fidelity for any initial pure product state because all pure
product states are equivalent up to local unitaries.

Finally, we observe
0 < Tr[p®2T*(1,n — p)] [S10]

because 1,~ — p is positive and T* positivity preserving. We then
obtain

F* < Tr[p®2T*(1,~)] [S11]
and may now average this inequality over p and use
) ®N
/ dp p®* = , [S12]

where S, is the rank 3 projector onto the symmetric space of two
qubits. The operator norm of this expression is 1/3" whereas
Tr[T*(1,~)] <2V leading to F* < (3)¥, as desired.

Pigeonhole Argument and Chernoff Bound. We are now ready to
prove the first no-counterfeiting result for gtickets.

Proof of Theorem 4: Consider the boolean random variables
E = (E|, ..., Ey) with joint distribution given by

pE)|. [S13]

Pr( = b = /darr[ 5)®<,p, il -

Intuitively, the variable E; represents the event of measuring
the i-th component to be correctly cloned.

In order for the two qtickets to be accepted, there must be a
total of at least F,; N components yielding the correct measured
outcome in each gticket. By the pigeonhole principle, there are at
least 2F ;N — N components that were measured correctly on
both submitted qtickets,

N
<Pr{z > ( 2Ft01—1)N} [S14]

For arbitrarily chosen 7, the E; may be dependent variables.
However, according to lemma 2, for any subset S of qubit com-
ponents, we may bound

2 ||
PrlViesEi] < <§> .

Theorem 1 is now invoked to provide an upper bound on the
RHS of Eq. S14, yielding the thesis of theorem 4.

[S15]

Combinatorial Bound on Learning. The bound on counterfeiting that
we have provided assumes that two (possibly entangled) counter-
feits are produced by applying a CPTP map on a single original
copy. In contrast, a sequential strategy temporally orders the sub-
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mitted qtickets where the production strategy (CPTP map) for
the later submissions can depend on whether previous submis-
sions where accepted or not. The counterfeiter may learn valu-
able information about how to construct valid qtickets from
the feedback provided by the verifiers. The content of theorem
5 is that even with a valid qticket and the information learned
from v repeated submissions it is very unlikely for a counterfeiter
to produce more than one accepted gticket.

Proof of Theorem 5: According to theorem 4, the probability p,(T)
for any CP map T to produce two valid counterfeit copies from a
single one is upper bounded by B = e~ NP2Fui-112/3) We bound
the counterfeiting probability of an interactive strategy S submit-
ting v tokens for verification by the sum of the counterfeiting
fidelity of (3) CP maps T} ;. Each of these maps corresponds
to the case in which a specific pair {k, [} of the v submitted tokens
are the first to be accepted by the verifiers.

Without loss of generality, we assume that in an interactive
strategy the holder waits for the outcome of the j-th verification
in order to decide how to continue and produce the j + 1-th sub-
mission. We model a v step interactive strategy S as a collection of
CPTP maps {S;} with b a boolean string of length between 0 and
v — 1 representing what the counterfeiter does after receiving the
first len(b) verification outcomes.

Each S-is a CPTP map from #y; to # 9 ® # 'y, where # g isa
Hilbert space accommodating qtickets and % is a larger space
representing the memory of the holder. Fig. S1 illustrates infor-
mation flow as understood for both the interactive and non-inter-
active scenarios. .

For any partial verification result b we may write the CPTP
map which produces the len(b) submissions as S,(b), which is
composed of successwely applying S, for all initial substrings
b’ of b. That is

Sp=Sp  Sp=(1d8 g 5;) ° Sy [S16]
For an interactive strategy S the probability that the first len(l;)

verification outcomes are given by b is expressed as

Pi(S IQ\ZTI{

i=1
peQ I

len( _,

(b; Pacc+bj re]) ® 1y

[S17]

where Pr”ej := 19 — Pl.. The probability for the interactive strat-
egy S to succeed at counterfeiting in v steps can be described as
the sum of these probabilities over all possible full verification
outcomes, including at least two acceptances:

Pav(S)= 3 ps(S)

len(b)=v

[S18]

The key idea now is to use p;(S) = pj; (S) + pj;, () to provide an
alternate expression for this sum. Namely, we combine verifica-
tion outcomes starting in the same way into a single summand
while avoiding the inclusion of failed counterfeiting attempts.
Each full verification outcome containing two or more successful
verifications has a unique shortest initial substring containing
exactly two successful verifications. That a given substring is the
shortest can be guaranteed by taking the last verification of the
substring to be one of the two accepted.

Pa(S) = Z p;(S

zbz

[S19]

blen b=
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Each of the (}) summands on the RHS of Eq. S19, may be char-
acterized by two indices &, [ s.t.

for some k <[ <. [S20]

For each one of these summands, we construct a static strategy
Tri(p) = Try, /S t[(b)( p)] that takes as input a single valid qgticket p
and submits exactly two tokens. The counterfeiting probability of
this map on p is

Tr[(Picc)®* Tri(p)] = Tr[(Picc) ®2Tr\k.l[~§tl(b‘)(9)”

. len ﬂ
=Tr |:St1(1;) (P)

len(b)

(b Phe+bilg) ® 1H}

.
Il

ZTr{S - (p)

t( ) (b P“CC +b] reJ) ® 1H:| .

Jj=1
[S21]

By averaging over p € Q we obtain p;(S) < py(Tx;) < B and in-
voking Eq. 819 we obtain p, ,(S) < (5)B.

Tightness. For F, < 5/6 applying an optimal qubit cloning map
4 Alp)=1p@p+ip®1+41® pon each of the individual
qubits of the qticket provides a good counterfeiting probability.
The plot in Fig. S2 illustrates the probability of counterfeiter to
actually get two qtickets accepted when taking this approach. For
each of the two counterfeited qtickets, the probability of failing
verification is the cumulant of a binomial distribution B(N, 5/6)
up to Fi, N and rejection probability may be upper bounded by
1exp(=2N(5/6 — Fyo1)?) using Hoeffding’s inequality. Even when
failure of the two qtickets is anticorrelated, the probability of
either of them failing verification cannot exceed the sum. Hence,
the scheme cannot be made secure for F,, < 5/6. Although such
a scheme provides optimal forging probability when (Fy, = 1),
other schemes could in principle outperform it in terms of coun-
terfeiting capability. However, our security result shows that
asymptotically in N, no other strategy may work for F, > 5/6.

Extension: Issuing multiple identical qtickets. Our results admit gen-
eralization to a scenario where the ¢ identical copies of each
qgticket are issued and successful verification of ¢ + 1 is to be ex-
cluded. To obtain an analog of lemma 1 requires the individual
qubits composing a qticket to be drawn at random from a state
t-design with t = ¢ + (¢ + 1) (for example, t = 5 would already be
needed if two identical copies are issued). The optimal ¢ — ¢ + 1
cloning probability for N component product states is in this case
bounded by (¢5 1) . The threshold fidelity required to guarantee
security is then givenby Fi, > 1 — m For such an F, the
analogous result to theorem 4 one obtained is

Pemes1 (T) < e™NPUerDFaelzl), [S22]
Finally, if v > ¢ + 1 verification attempts are allowed, the prob-
ability of counterfeiting can be proven not to grow faster than
(¢+)- The proofs of these claims completely follow the lines that
have been presented. Striving for legibility, we have limited the
proof presented to ¢ = 1, thus avoiding the notational burden im-
posed by the extra indices required.

CV-Qtickets. In this section we provide a proof that cv-qtickets are
secure, not only against counterfeiting but also against any other
possible double usage. We first present definitions for cv-qtickets
and their verification. We then state the associated soundness and
security guarantees and outline the security proof. Only the proof
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of the security statement is provided because proving soundness
for cv-qtickets requires no additional techniques as compared to
soundness of gtickets.

Definition of CV-gticket. Each cv-qticket is composed of n X r qubit
pairs. Each qubit pair is prepared by choosing a state from

{10, +),

0, =) [1,4), 1, =), [+, 00, [=, 0), [+, 1), [= 1)}

uniformly at random.

A full verification question for the cv-qticket will consist of n
randomly chosen axes from {X, Z} each corresponding to a
specific block of r qubit pairs. In principle, the holder of the
cv-qticket then measures the polarization of every qubit compo-
nent along the corresponding requested axis and communicates
the measurement outcomes to the verifier. The criteria to con-
sider an answer correct is the following; within each of the n
blocks, at least F,r of the reported outcomes corresponding
to qubits prepared in a polarization eigenstate of the inquired axis
should be given correctly.

Soundness. The soundness result states that even under imperfect
storage and readout fidelity, legitimate cv-qtickets work well as
long as the fidelity loss is not too severe. Again, the CPTP maps
M ; will be assumed to represent the encoding, storage, and read-
out of the j-th qubit component of the cv-qticket, with the full
map over all components given by M = Qe 2} M. In
the case of cv-qtickets, sufficiently many (F,,r) correct answers
should be provided within each block, demanding that a suffi-
ciently good average fidelity be implemented for every single
block. A random remapping of the Cartesian axes for each qubit
component of a cv-qticket is also necessary and can be achieved
via a random unitary (possibly from a unitary 2-design). This is
required, for example, in the case where an actual physical polar-
ization, say X, is lost faster than other components. In this case
asking for the stored X polarization for all qubits in a block may
yield a large failure probability even though the average storage
fidelity among the qubits is sufficiently high. A random unitary
remapping solves this problem and allows to connect with the
average qubit storage fidelity, even in the case where only two
nominal axes are used.

Given F; = F(M;), the average fidelity of the qubit map M,
we define Fey, = N 7! i (11— ¥ to be the average qubit fide-
lity within block b € {1, ..., n}. Furthermore, to simplify the final
expression, let us define Fey, = ming Feyp .

Theorem 6. (Soundness of cv-qtickets) As long as Fey, > Fi, an
honest holder implementing a map M can successfully redeem
cv-qtickets with a probability

pﬁV(M) > (1 —e_rD(FcXp”Ftul))n.

Observe that one may reduce this statement to n independent
statements within each block that are completely analogous to the
soundness for qtickets theorem 3.

Security. A naive security statement expresses that the holder of a
single cv-qticket is unable to produce two copies from it, each
with the potential of passing a verification. Because the verifica-
tion of cv-qtickets is achieved by sending a classical message to a
verifier, a stronger security statement is needed for cv-qtickets; it
states that even with simultaneous access to two randomly chosen
verification questions, the holder of a cv-qticket is exponentially
unlikely to provide satisfactory answers to both. We further
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extend our security claim, to an even more adverse scenario;
the holder of a cv-qticket has simultaneous access to v indepen-
dent verification questions and may proceed to answer them in
any chosen order. Moreover failing in verification attempts does
not forbid the holder from further attempts that may possibly be
performed relying on the information accumulated from previous
verification outcomes.

Let S be a mathematical object denoting the counterfeiting
strategy taken by the holder of a valid cv-qticket. We will denote
by pg',(S), the probability that strategy S leads to two or more
successful verifications when engaging in v verification attempts
with possibly independent verifiers. The probability is taken over
the random generation of cv-qtickets, of verification questions
and of measurement outcomes (Born’s rule). The security state-
ment is then as follows.

Theorem 7. (Security of cv-qtickets) For any counterfeiting strategy S

1+1/V2
2

and tolerance parameter F, > we have

2 -rD(F )\ "
pis) = (5) (172w T

The proof of this statement goes as follows. Because abstractly
cv-qtickets consist of a set of randomly produced states and
questions requested on these states the formalism of quantum
retrieval games (QRGs) provides adequate modelling. This fra-
mework is presented in a largely self-contained manner because
its generality and potential make it of independent interest. We
first provide basic definitions for QRGs and derive some simple
results. Then we present possible ways of composing QRGs
together with associated quantitative bounds. The first results are
then applied to the qubit pair constituents of cv-qtickets to bound
the holders potential to provide answers to complementary ques-
tion. Cv-qtickets are then modelled by a QRG for scenarios in
which the holder of a cv-qticket wishes to simultaneously answer
questions from two independent verifiers without any additional
aid. Finally, a combinatorial bound, similar to the one used for
qtickets, is used to provide an upper limit on how the double
verification probability may increase with the number v of veri-
fication attempts.

Quantum retrieval games. Quantum retrieval games (QRGs), re-
cently defined by Gavinsky (5) provide a framework to analyze
protocols in which information is to be extracted from a state pro-
duced according to a classical probability distribution. We will
here present a definition of QRGs following Gavinsky as well
as some additional results derived that may be of independent
interest.

Alice prepares a normalized state p, = ¢(s)/p, according to
the probability p, := Tr[g,] and transfers it to Bob. Whereas Alice
remembers the index s of the generated state, Bob is only pro-
vided with p; and a full description of the distribution from which
it was generated. Alice then asks Bob a question about s that Bob
attempts to answer as best as possible. A simple possibility is for
Alice to directly ask Bob the value of s. In general, however, the
set of possible answers 4 need not coincide with the set of indexes
S over the possible prepared states. If each answer a is either cor-
rect or incorrect the question may be modeled as 6 € S x 4 —
{0, 1}. That is, o (s, a) = 1 iff the answer a is correct for state in-
dex s and o(s, @) = 0 otherwise. Such a definition for o faithfully
represents Gavinsky’s QRGs. We extend this notion to weighted
quantum retrieval games (WQRGs) to model situations where
some answers are “more correct” than others. Here for each pre-
pared state s and possible answer a the game will assign a non-
negative real value o(s, a) associated to the utility function of
answer a given input s (ie., c € x4 - R,).
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Bob needs to choose an answer a € A and may use his copy of
state p; to do so. The most general strategy that Bob can take
according to the laws of quantum mechanics is to perform a
positive operator valued measurement (POVM). We will consi-
der post-selected POVMs, as opposed to a physical POVM, as
those that may fail to produce a measurement outcome. That
is, whereas a physical POVM always produces an outcome from
the expected set, for post-selected POVM some “invalid” out-
comes are discarded and excluded from statistics.

In order to express the random preparation of states by Alice
we first define the notion of an indexed ensemble.

Definition 5: (Indexed Ensemble) We will say that ¢ is an ensemble
on % indexed over S iff Vs € S : ¢(s) is a positive operator on #
and ¥ Trlo(s)] = 1.

Note that if ¢ is an indexed ensemble, then p = Y o(s) is a
normalized density matrix. Although Alice gives a specific
state ¢(s)/Tr[o(s)] to Bob, because Bob does not know s, he does
not know which one has been received. The state p =
Tratice[Ysess ® ¢(s)] will be called the reduced density matrix
of ¢ because it corresponds to tracing out Alice’s classically
correlated subsystem containing the index s. Without loss of gen-
erality, p can be assumed to be full rank on 7.

In other words, a physical/selective projection & indexed over
A is simply a physical/post-selected POVM equipped with an
interpretation for each possible measurement outcome in terms
of possible answers in a € A4.

Definition 6: (Selective and Physical Projections) We will say that & is
a selective projection indexed over A iff Va € A, P(a) are
bounded positive semidefinite operators on #. It will also be
a physical projection iff ) ,%(a) = 1.

Note that no normalization has been imposed for selective pro-
jections because induced probability distributions are normalized
a posteriori. An indexed ensemble and a projection on the same
Hilbert space induce a joint probability distribution over the in-
dexes S x A of prepared states and provided answers.

Definition 7: (Induced Probability Distribution) Let ¢ be an ensemble
on # indexed over S and let & be a projection on % indexed over
A. Then

[S23]

is a probability distribution over § x A4 that will be denoted by
p = (¢, %) and is undefined unless Y, , Tr[%(a)eo(s)] > 0.
Furthermore, note that for physical projections the denomina-
tor in Eq. S23 is 1 and the marginal of the resulting distribution
over Sisp(s) = Y.,p(s, a) = Tr[o(s)], which is independent of 2.

Definition 8: (Weighted Quantum Retrieval Games) Let ¢ be an en-
semble on % indexed over S. Consider a utility function ¢ € § X
A — R,. Then the pair ¥ = (g, o) is a weighted quantum retrie-
val game. A WQRG is also a QRG when 6 € S x 4 — {0, 1}.
The value of a game & w.r.t. a projection & is the average utility
obtained by Bob by using a certain measurement strategy 9. This
value is given by the expectancy of the utility function ¢ over the
joint distribution of prepared states and measurement outcomes.

Definition 9: The value of game ¥ = (o,
defined as

6) w.r.t. projection & is

Pastawski et al. www.pnas.org/cgi/doi/10.1073/pnas.1203552109

Val(g, P) = [S24]

Zp(s, a)o(s,a)

s,a

where p = (¢, &) is the induced probability distribution.

We now define the optimum value achievable by Bob for two
distinct conditions depending on whether selective or physical
projections are allowed.

Definition 10: The selective (respectively physical) value of a game
Z are defined as

Sel(¥) = sup Val(¢, %) [S25]
PeSelective projections
Phys(%) := sup Val(g, P). [S26]

PePhysical projections

Note that according to this definition Sel(¥) > Phys(¥)
because the supremum is taken over a larger set. However, for
certain tailored games, the selective and physical values will
coincide. The advantage of selective values is that they may be
straightforwardly computed and are more amenable to composi-
tional results. If Bob is forced to provide an answer, he can only
achieve the physical value of a game. If Bob is allowed to abort
the game after measuring his state p; and aborted games are not
considered when calculating his expected utility then he will be
able to achieve the selective value.

The following result provides an explicit formula to calculate
the selective value of a game. In this sense, it is a generalization of
lemma 4.3 in (5).

Theorem 8. (Selective Value of a Game) Let & = (¢, 6) be a WORG
with Y. .0(s) = p. Define O(a) = Y. 6(s,a)p~"?0(s)p~"/% Then
the selective value of € may be calculated as Sel(%) =
max, ||O(a)l|l, where || - || denotes the operator norm.

Proof: We first use the definition of the value of a game & w.r.t. 2,
expand the induced probability distribution and move the sum
over s inside the trace

2 Tr[g’(a)zc(& a)e(s)]
VA& = S @ e

We define 2 such that P(a) = p'/2P(a)p'/2. Using this defini-
tion and that of p and O, we may rewrite

[S27]

Z Tr[P(a)O(a -
Val(¢, ) = -~ < maxTr[g)(a)O( @)l
, > Tr(P@)] T e TiP(a)]
< max||O(a)]l. [S28]

The first inequality uses the positivity of all summands. For the
second inequality we note that &(a) must be positive semidefi-
nite and the variational definition of operator norm of the posi-
tive semidefinite operator O(a). Equality can be achieved by
taking P(a,) to be a projector onto the highest eigenvalue sub-
space of O(ay) if ||O(ay)|| = max,||O(a)|| and taking P(a,) =0
otherwise.
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The theorem provides an explicit construction of a projection
achieving the selective value of a game. Furthermore, the proof
allows us to derive a necessary and sufficient condition under
which the selective and physical values of a game coincide.

Corollary 9. Given a retrieval game €, we have that Sel(%) =
Phys(¥&) iff there exist positive P(a) such that
and 295 =p

0(a)P(a) = Sel(¥)P(a) [S29]

We now turn to the systematic composition of retrieval games
in the form of product and threshold games. Composition pro-
vides a way to construct more elaborate retrieval games together
with bounds on their associated values. A natural definition of
tensor product may be given for indexed ensembles, projections,
and utility functions.

(01 ® 02)(51,52) = 01(51) ® 02(52) [S30]
(21 ® Py)(ay,a2) = Pi(a)) @ Pa(az) [S31]
(61 ® 63)((51,52), (a1, a2)) = 61(51, @1)0,(52, a2) [S32]

These definitions have the property that the tensor product of
physical projections is a physical projection and that the induced
probability distribution of two tensor product is the tensor pro-
duct of the individual induced probability distributions:

(01 ® 02), (21 ® P,)) = (01, P1) ® (02, P2).

Definition 11: (Tensor Product WQRG) Let &, = (¢,,6,) and
&, = (02, 0,). We define the tensor product WQRG &, ® €,
as

T1®% = (01 ®0.01 ®0,).

Proposition 10. (Tensor Product Selective Value) The selective value of
a tensor product game is the product of the selective value of the
independent games.

Sel(?l ® ?2) = Sel(?l)Sel(fz)

Proof: By using the definition of O(a) in theorem 8 with respect to
the WQRG involved we obtain

10(ay, ax)ll = 101 (ar) ® Oz(ay)ll = [10:(a)) | O2(a2)].

Maximizing over a; and a, on both sides theorem 8 provides the
desired equality.

The selective value of the product game is attained by the ten-
sor product of projections, each achieving the respective selective
values.

Corollary 11. (Tensor Product Physical Value) If Phys(&) = Sel(¢,)
and Phys(%,) = Sel(¥,) then Phys(¥, ® &,) = Sel(¥, ® ©,).

Given a direct product game and a projection for it one may
consider the inverse procedure of defining a projection on one of
the subcomponents of the game.

Pastawski et al. www.pnas.org/cgi/doi/10.1073/pnas.1203552109

Definition 12: (Restriction of a Projection) Let & be a projection on
H\ ® ¥, indexed over A, X A,. Furthermore, let p, be a nor-
malized density matrix on #’,. We define the restriction %, with
respect to p, and A, as

9’|1 a) (a1,a,)1 ® py).

Z Tr, (P

By abuse of notation, if p = p; ® p, is a normalized product
state in %', ® %, we may define the restriction of & with respect
to the normalized tensor factors of p. This is the case for the re-
duced density matrix of product indexed ensembles. By restricting
a projection one obtains a new projection that induces the same
reduced probability distribution.

Lemma 3. (Restriction of a Projection) Ler ), be the restriction of P
with respect to p, and A,, where p, is the reduced density matrix of
0. Then

(01, P1)(s1,a1) = Z<Ql ® 02, P)(5152, a1ay).

$2,ds

Theorem 12. (Selective Value of Threshold QRG) Ler &; = (Q}-, G]—) be
WQRGs s.t. o; € (S;.4;) = [0,1] and Sel(¥ ) =0; for all
je{l,....,n}. Furthermore take 8 = n~! pAERY and6<y< 1.
Define the ORG 9, = (Q)0;) o) with a tensor product ensemble
distribution and boolean utility ﬁmctlon

5.0 = (S oisya) 2 ).
j=1

Then we have Sel(%,) < 2e"PI),

Proof: The direct product indexed ensemble ¢ = ),¢; and pro-
jection & induce a normalized probability distribution over
S X A given by

Tr[P(a)e(s)]

PO T @]

Define the dependent random variable X to be o;(s;, a;) where
s; and a; are taken according to this probability distribution. For
any S C {l,....,n}, we may define % as the restriction of the
projection & to the subsystems specified by S with respect to

(ps)- By proposition 10 we have that

Exp {ij] Val (@Z,,%s) <1Is [S33]
j€S jes
Using theorem 1 and definition 9 we obtain
Val(¢,, P) = Pr{ZXj > yn] < 2¢nD(I8), [S34]

i

Because this is true for arbitrary 9 we conclude that
Sel(%,) < 2ePuI®),

CV-qticket qubit pair building block. Consider a game in which Alice
transfers to Bob one of the following states chosen at random
§={10.+).10. =), [1, 1), |- 1)},

). 1 =), [+, 0), 1= 0), [+,
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each with probability 1/8. Alice then asks Bob for the Z polariza-
tion of both qubits, possible answers being A = {00, 01, 10, 11}.
An answer is correct iff it coincides in the polarization of the qubit
prepared in a Z eigenstate. Bob can always answer the question
correctly by measuring both qubits in the Z basis.

The quantum retrieval game formalism applies to this problem
although one must admit that it is like cracking a nut with a sled-
gehammer. We call this game ¥, = (¢, 6,) where we have
>so(s) =p=1,4/4, and Tr(o(s)) = 1/8 for all s € S. A formal
definition of the utility function o, can be given as c(s, a) =
(s; = a, or s, = a,). We first define the operators O(a) from the-
orem 8. Due to symmetry we may restrict to considering one such
operator

0(00) = 4(0(0. +) + (0. =) + ¢(+.0) + (. 0))  [S35]
and find that [|O(00)|| = 1 that is a nondegenerate eigenvalue for
all O(a). The fact that the four corresponding eigenspaces are
orthogonal confirms that 1 is also the physical value of the game.

The same trivial value of 1 can be achieved for the game in
which Alice requests the X direction polarization of the states.
We will call this game €y = (¢, ox). The problem becomes in-
teresting if Bob is requested provide a guess for both complemen-
tary polarizations. There are two relevant possibilities, both of
which will require Bob to give an answer twice as long as before.
The first scenario describes the best case probability of Bob an-
swering both questions correctly and may be modeled by a QRG
with utility function

Gr=(0.06x)  Opls.axaz) =ocx(s.ax)Aoz(s az).
In the second scenario we are interested in the average number of
questions answered correctly when two complementary questions
are posed and may be modeled by the WQRG with utility func-
tion

ox(s,ax)+oz(s,az)
> .

?avg = (Qs csavg) Gavg(s’ aXaZ) =
Thanks to symmetries one need only calculate a single ||O(a)l|
and for concreteness we choose O(+ + 00). For the conjunction
QRG we obtain

O(++00) = 4(¢(0, +) + ¢(+,0)) and [|O,q0ll = 3/4.

For the average WQRG we obtain

O(+ +00) = 2[20(0, +) + 2¢(+, 0) + ¢(0. =) + ¢(—, 0)

+o(+. 1) +e(l. +)] [S36]
and ||O, o0l = 1/2 + 1/+/8 = 0.8536, precisely the optimal fide-
lity for covariant qubit cloning (i.e., cloning of equatorial qubits).
On the other hand, if Bob is asked the same question twice
instead of complementary questions it is clear that he will be able
to repeat two correct answers. All in all, if Bob is asked comple-
mentary question half of the time and coinciding questions half of
the time he will be able to emulate an average fidelity of
3/4 +/2/8 ~0.927.

Indeed, once we have defined a concrete WQRG, calculating
its selective value becomes an exercise thanks to theorem 8.
Furthermore, if the game has sufficient symmetry it will be pos-
sible to prove a coinciding physical values for the game.

CV-gqticket. We will first bound the probability of answering two of
these randomly chosen questions by bounding the selective value
of the corresponding retrieval game. As an auxiliary initial step,
we bound the value of a game where r complementary questions

Pastawski et al. www.pnas.org/cgi/doi/10.1073/pnas.1203552109

are asked on r qubit pairs (corresponding to the case in which the
two random questions in a block are complementary).

X))o o (X X
c}m])(s,a(x)) = (Z o'; )(sj,a}( ) szlr)
=1

7)o = o2 z
01(:[0?(5,“(2)) - (2 (5]( )(Sj,tl; )) ZFtolr)

of, (5. (@X).aD) = o) 5. aW) A}l (5. P) - 1837)

We will not calculate the selective value exactly but give a
bound in terms of theorem 12. In order for the two block answers
to be correct, among the two, at least 2 F;r answers should have
been provided correctly for individual qubit pairs. Such a condi-
tion is weaker because it only imposes that the sum among the
two block answers be sufficiently large, not necessarily implying
that they are both above threshold.

,
bl od = av, X V4
op (5 (@%),d#))) < (Z ;" (s), (a; >,a; ) > ler)
=1
[S38]

The description on the right hand side has precisely the form
required for theorem 12. We conclude that the selective value
and hence the probability within any strategy of providing
valid answers to two complementary questions for the same block
is upper bounded by 2exp[-rD(Fll1/2+1/v/8)] (for
Fio > 1/2+1/V8).

Given two randomly chosen questions for a block there is a
probability of 1/2 that they will coincide and a probability 1/2
that they will be complementary. Taking this into account, the
probability for a dishonest holder to correctly answer two such
randomly chosen block questions is upper bounded by 1/2+
exp[-rD(Fy||1/2 + 1/+/8)]. By taking r sufficiently large, this
value can be guaranteed to be smaller then 1. Hence, the prob-
ability of correctly answering n such randomly chosen threshold
question pairs will be upper bounded by B:=(1/2+
exp[—rD(F 1, 1/2 + 1/+/8)])", which can be made exponentially
close to 1 in n.

Combinatorial bound on choosing and learning. The formulation
presented adequately models a scenario in which the holder of
a cv-qticket does not receive any feedback from the verifiers.
However, if the holder of a cv-qticket can engage in several ver-
ification protocols, new possibilities arise that should be taken
into account.

Firstly, by simultaneously engaging in several (v) verification
protocols with different verifiers, the holder may simultaneously
have access to v challenge questions. The holder may then, for
instance, choose the most similar questions and attempt to
answer these. Furthermore, by successively participating in v ver-
ification protocols the holder can choose to perform verifications
sequentially and wait for the outcome of the k-th before choosing
which question to answer as the k + 1-th and providing an answer
for it.

In general, if the holder engages in v verification attempts, he
will receive v random questions providing no additional informa-
tion on the cv-qticket. There are () possible question pairs
among these, each of which can be seen as randomly chosen.
Thus if no feedback is used the probability of answering at least
one of these pairs correctly is upper bounded by () B. An exam-
ple scenario where this bound is relatively tight is when r is very
large and n is relatively small. In this case, the probability of
answering two randomly chosen questions is well approximated
by the collision probability 27 (i.e., the probability that two ques-
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tions coincide) that grows precisely as (}) if the holder has access
to v independently drawn questions and may choose to answer
any pair.

Suppose, now, that the answers to the verifiers are provided
sequentially so that the decision of which answer to produce for
each verifier may be made dependent on the outcome of previous
verifications. We can safely assume that the answers to challenge
questions are then provided sequentially, each after receiving the
acceptance or rejection of the previous ones. We can then apply a
similar argument to the one exposed for the proof of theorem 5,
which yields an additional factor of (}) corresponding to the pos-
sible feedback scenarios up to the point of the second accepted
answer, each of which can be simulated statically (i.e., by assum-
ing the given feedback and fixing a corresponding POVM to gen-
erate answer up to that point). Hence, the total probability for an
interactive strategy with v verification attempts of producing two
or more accepted answers is upper bounded by (})2B.

It may seem artificial for verifiers to select a random question
each time. Randomness is important in order to avoid revealing
information about the issued cv-qticket. However, the verifier
may choose a random question once and for all and ask it until
it is answered correctly. Once it has been answered correctly, the
verifier knows that the cv-qticket has already been redeemed and
can thus reject all subsequent verification attempts. Such a
scheme resembles existing protocols for prepaid telephone cards.
However, the quantum case provides an advantage because one
may have multiple verifiers that do not communicate. In a simple
example with two verifiers, two composite questions may be cho-
sen such that they are complementary on every qubit pair (i.e.,
one question is chosen at random and uniquely determines the
other).

Applications. Our quantum information application attempts to
reduce quantum requirements to a minimum. However, even
prepare and measure qubit memories remain technologically
challenging. For problems admitting a classical solution, such
an approach is likely to be technologically less demanding. In
other words, relevant applications for prepare and measure quan-
tum memories will be those solving problems for which no clas-
sical solutions are known. In this section we discuss some
problems with classical solutions and propose refinement of such
problems for which no classical solution is possible.

Enforcing single usage with a single verifier. For some applications,
the no cloning of quantum information is only an apparent ad-
vantage. Our qticket and cv-qticket constructions can guarantee
an exponentially small double usage probability. However, such a
guarantee may be trivially enforced classically for scenarios where
there is a single verifier or if the verifiers have access to realtime
communication with a centralized database. In this case, a ran-
domly chosen classical ticket has equally good properties. After
a ticket is successfully redeemed once, it can be removed from the
central database, making it invalid for any successive verification
attempt. In fact this classical strategy is widely used for crediting
prepaid phone lines with a client calling a toll free number and
typing the purchased ticket number in order to credit a telephone
account. Thus in such scenarios, the quantum strategy does not
provide additional protection with respect to a classical solution.

Multiple noncommunicating verifiers. In scenarios with multiple
noncommunicating verifiers, (cv-)qtickets provide a solution to
a problem where all classical approaches fail. We describe a wit-
ness protection program as an example of how such a scenario
might look.

In a witness protection program, a governmental institution
decides to give asylum to a key eyewitness to whom an unforge-
able quantum token is issued. This token can be used by the wit-
ness (holder) to claim asylum in any of a set of participating

Pastawski et al. www.pnas.org/cgi/doi/10.1073/pnas.1203552109

hotels (verifiers). The issuer also provides all hotels with the ne-
cessary information to verify the tokens. When using the token,
neither the eyewitness nor the chosen hotel wish to divulge the
locale where the witness is hosted, thus protecting both from
being targets of an attack. In particular, communication is sus-
pended between participating hotels as well as with the issuing
authority. Any classical solution cannot prevent a sufficiently re-
sourceful holder from making copies of the received token, thus
hotels are forced to communicate in order to avoid its double use.
In this case, a quantum solution based on unforgeable tokens is
the sole possibility to satisfy these unique constraints. A protocol
satisfying such constraints is illustrated in Fig. S3.

Reduced availability under sporadic verification. In principle, a cen-
tralized database may guarantee that classical ticket is only re-
deemed once. However, there are situations where the ticket
should be available only to one holder at a time and the nonclon-
able nature of a gticket allows enforcing this. One such example is
the sporadic control of tickets required for a given service. For
concreteness, imagine a qticket that is valid for making use of a
public transportation network. Commuters are sporadically con-
trolled, at which point if they are found to have an invalid qticket
they are charged an important fine, whereas if they are found to
hold a valid gticket, they are provided with a fresh substitute. If
the transportation tickets are classical, sporadic control cannot
avoid counterfeited copies in the hands of colluding commuters
from circulating simultaneously. The deceiving commuters need
only communicate classically among each other before and after
they are controlled, effectively sharing a single classical ticket to
make use of the service multiple times*. In contrast the unavail-
ability of long distance quantum communication would disallow
their sharing a qticket in such a way (i.e., each valid qticket may
only be at one place at a time).

The quantum credit card. Having developed a single verification,
noise tolerant, nonforgeable token, such as the cv-qticket, it is
now possible to examine generalizations to interesting composite
protocols. For instance, Gavinsky’s proposal (5) allows for multi-
ple verification rounds to be performed on a single token, while
also ensuring that the token cannot be split into two indepen-
dently valid subparts. Such a construction may be seen as a quan-
tum credit card. Indeed, the classical communication that takes
place with the issuer (bank) to verify the cv-qticket (via “chal-
lenge” questions) may be intentionally publicized to a merchant
who needs to be convinced of the card’s validity. An alternate
possibility is to follow the original interpretation as a quantum
cash token where verification is performed by the receiver each
time the “money” changes hands.

Excluding eeavesdroppers. Although qtickets do not provide addi-
tional advantage against dishonest holder in the scenario of a sin-
gle verifier quantumness may provide an advantage against
eavesdropping and untrusted communication. In order to make
online banking more secure, Banks routinely use TANS (transac-
tion authentication numbers) as an additional security measure.
The bank sends its client a list of TANs via postal service in ad-
dition to an online password that is set up via another channel.
Each time a bank transaction is requested online by the client, the
bank requests a TAN from the list to guarantee the authenticity of
the transaction. An impostor then needs to know both a secret
password used by the user and some TANS, thus increasing
the difficulty to succesfully impersonate a transaction with re-
spect to any single security measure. However, because TANs
are classical objects it is conceivable that an eavesdropper may
learn them while remaining undetected (imagine an eavesdrop-

*If the classical ticket is not renewed upon control even communication is unnecesary.
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per taking X-ray pictures of the correspondence). As a result, the
additional security measure becomes ineffective with some effort
of the eavesdropper.

This problem can be straightforwardly resolved by using quan-
tum prepare and measure memories. Even if a cv-qticket is sent
via an untrusted optical fiber or postal service, the receiver
may openly communicate with the issuer and sacrifice some of
the received qubits in order to obtain a bound on how much in-
formation could have leaked to eavesdropers. Quantum key dis-
tribution (QKD) takes precisely such an approach to obtain a
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ments and product measurements. Phys Rev A 84:022327.
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(A) We schematically illustrate how a dynamical strategy S works. Each step of a strategy (gray rectangles) is a CPTP map S that depends on the

classical outcome b of previous verifications. The first map S, takes an original gticket p as input, whereas subsequent steps rely on an internal memory state of
the holder. The content of internal memory could range from no information at all to a full original gticket and a detailed register of previous submissions. The
verifiers have a fixed strategy II° that consists of applying the measurement {Phc, reJ} and only returning the classical boolean measurement outcome. (B) By
fixing the classical input b to the strategy, a CPTP map S eHq— ,%’@'e”(b) +1® #4 is constructed, corresponding to one possible partial application of the
strategy S. This CPTP map produces Ien(b) + 1 possibly entangled outputs in % from a single input qgticket.
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Fig. S2. We numerically calculate the probability of accepting two copies of a gticket when the adversary strategy is assumed to be independently cloning
each of the N qubits using an optimal cloning map. We see that the probability of producing two accepted qtickets approaches a step function at 5/6 with N.

Fig. S3. 1) The issuing entity hands a qticket to the key witness. 2) It provides the hotels with the secret classical description that will be used to verify it. 3a) An
honest witness chooses a hotel and physically transfers the gticket for verification. It will be accepted as long as the level of accumulated noise is below
threshold. 3b) A dishonest witness will fail to counterfeit his/her gticker to provide accommodation for an additional guest. However, there is no way of
avoiding a valid gticket from changing hands.
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