32 research outputs found

    Scarring on invariant manifolds for perturbed quantized hyperbolic toral automorphisms

    Full text link
    We exhibit scarring for certain nonlinear ergodic toral automorphisms. There are perturbed quantized hyperbolic toral automorphisms preserving certain co-isotropic submanifolds. The classical dynamics is ergodic, hence in the semiclassical limit almost all eigenstates converge to the volume measure of the torus. Nevertheless, we show that for each of the invariant submanifolds, there are also eigenstates which localize and converge to the volume measure of the corresponding submanifold.Comment: 17 page

    Intermediate statistics in quantum maps

    Full text link
    We present a one-parameter family of quantum maps whose spectral statistics are of the same intermediate type as observed in polygonal quantum billiards. Our central result is the evaluation of the spectral two-point correlation form factor at small argument, which in turn yields the asymptotic level compressibility for macroscopic correlation lengths

    Delocalization of slowly damped eigenmodes on Anosov manifolds

    Full text link
    We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a "strip" of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Comment: 28 pages; compared with version 1, minor modifications, add two reference

    Semi-classical study of the Quantum Hall conductivity

    Full text link
    The semi-classical study of the integer Quantum Hall conductivity is investigated for electrons in a bi-periodic potential V(x,y)V(x,y). The Hall conductivity is due to the tunnelling effect and we concentrate our study to potentials having three wells in a periodic cell. A non-zero topological conductivity requires special conditions for the positions, and shapes of the wells. The results are derived analytically and well confirmed by numerical calculations.Comment: 23 pages, 13 figure

    Quantization of multidimensional cat maps

    Full text link
    In this work we study cat maps with many degrees of freedom. Classical cat maps are classified using the Cayley parametrization of symplectic matrices and the closely associated center and chord generating functions. Particular attention is dedicated to loxodromic behavior, which is a new feature of two-dimensional maps. The maps are then quantized using a recently developed Weyl representation on the torus and the general condition on the Floquet angles is derived for a particular map to be quantizable. The semiclassical approximation is exact, regardless of the dimensionality or of the nature of the fixed points.Comment: 33 pages, latex, 6 figures, Submitted to Nonlinearit

    Eigenfunction Statistics on Quantum Graphs

    Full text link
    We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric sigma model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.Comment: 59 pages, 3 figure

    Entropic bounds on semiclassical measures for quantized one-dimensional maps

    Full text link
    Quantum ergodicity asserts that almost all infinite sequences of eigenstates of a quantized ergodic system are equidistributed in the phase space. On the other hand, there are might exist exceptional sequences which converge to different (non-Liouville) classical invariant measures. By the remarkable result of N. Anantharaman and S. Nonnenmacher math-ph/0610019, arXiv:0704.1564 (with H. Koch), for Anosov geodesic flows the metric entropy of any semiclassical measure must be bounded from below. The result seems to be optimal for uniformly expanding systems, but not in general case, where it might become even trivial if the curvature of the Riemannian manifold is strongly non-uniform. It has been conjectured by the same authors, that in fact, a stronger bound (valid in general case) should hold. In the present work we consider such entropic bounds using the model of quantized one-dimensional maps. For a certain class of non-uniformly expanding maps we prove Anantharaman-Nonnenmacher conjecture. Furthermore, for these maps we are able to construct some explicit sequences of eigenstates which saturate the bound. This demonstrates that the conjectured bound is actually optimal in that case.Comment: 38 pages, 4 figure

    Weyl's law and quantum ergodicity for maps with divided phase space

    Full text link
    For a general class of unitary quantum maps, whose underlying classical phase space is divided into several invariant domains of positive measure, we establish analogues of Weyl's law for the distribution of eigenphases. If the map has one ergodic component, and is periodic on the remaining domains, we prove the Schnirelman-Zelditch-Colin de Verdiere Theorem on the equidistribution of eigenfunctions with respect to the ergodic component of the classical map (quantum ergodicity). We apply our main theorems to quantised linked twist maps on the torus. In the Appendix, S. Zelditch connects these studies to some earlier results on `pimpled spheres' in the setting of Riemannian manifolds. The common feature is a divided phase space with a periodic component.Comment: Colour figures. Black & white figures available at http://www2.maths.bris.ac.uk/~majm. Appendix by Steve Zelditc

    Quantum cat maps with spin 1/2

    Full text link
    We derive a semiclassical trace formula for quantized chaotic transformations of the torus coupled to a two-spinor precessing in a magnetic field. The trace formula is applied to semiclassical correlation densities of the quantum map, which, according to the conjecture of Bohigas, Giannoni and Schmit, are expected to converge to those of the circular symplectic ensemble (CSE) of random matrices. In particular, we show that the diagonal approximation of the spectral form factor for small arguments agrees with the CSE prediction. The results are confirmed by numerical investigations.Comment: 26 pages, 3 figure

    Distribution of resonances for open quantum maps

    Get PDF
    We analyze simple models of classical chaotic open systems and of their quantizations (open quantum maps on the torus). Our models are similar to models recently studied in atomic and mesoscopic physics. They provide a numerical confirmation of the fractal Weyl law for the density of quantum resonances of such systems. The exponent in that law is related to the dimension of the classical repeller (or trapped set) of the system. In a simplified model, a rigorous argument gives the full resonance spectrum, which satisfies the fractal Weyl law. For this model, we can also compute a quantity characterizing the fluctuations of conductance through the system, namely the shot noise power: the value we obtain is close to the prediction of random matrix theory.Comment: 60 pages, no figures (numerical results are shown in other references
    corecore