67 research outputs found
Scaling Bounded Model Checking By Transforming Programs With Arrays
Bounded Model Checking is one the most successful techniques for finding bugs
in program. However, model checkers are resource hungry and are often unable to
verify programs with loops iterating over large arrays.We present a
transformation that enables bounded model checkers to verify a certain class of
array properties. Our technique transforms an array-manipulating (ANSI-C)
program to an array-free and loop-free (ANSI-C) program thereby reducing the
resource requirements of a model checker significantly. Model checking of the
transformed program using an off-the-shelf bounded model checker simulates the
loop iterations efficiently. Thus, our transformed program is a sound
abstraction of the original program and is also precise in a large number of
cases - we formally characterize the class of programs for which it is
guaranteed to be precise. We demonstrate the applicability and usefulness of
our technique on both industry code as well as academic benchmarks
An Experimental Evaluation of Deliberate Unsoundness in a Static Program Analyzer
Abstract. Many practical static analyzers are not completely sound by design. Their designers trade soundness in order to increase automa-tion, improve performance, and reduce the number of false positives or the annotation overhead. However, the impact of such design decisions on the effectiveness of an analyzer is not well understood. In this pa-per, we report on the first systematic effort to document and evaluate the sources of unsoundness in a static analyzer. We present a code in-strumentation that reflects the sources of deliberate unsoundness in the.NET static analyzer Clousot. We have instrumented code from several open source projects to evaluate how often concrete executions violate Clousot’s unsound assumptions. In our experiments, this was the case in 8–29 % of all analyzed methods. Our approach and findings can guide users of static analyzers in using them fruitfully, and designers in finding good trade-offs.
Cardiovascular risk in patients with alpha-1-antitrypsin deficiency
Background: Alpha-1-antitrypsin deficiency (AATD) is a rare inherited condition caused by mutations of the SERPINA1
gene that is associated with the development of a COPD like lung disease. The comorbidities in patients with AATDrelated lung diseases are not well defined. The aim of this study was to analyze the clinical phenotype of AATD
patients within the German COPD cohort study COSYCONET (“COPD and SYstemic consequences-COmorbidities
NETwork”) cohort focusing on the distribution of comorbidities.
Method and results: The data from 2645 COSYCONET patients, including 139 AATD patients (110 with and 29 without
augmentation therapy), were analyzed by descriptive statistics and regression analyses. We found significantly lower
prevalence of cardiovascular comorbidities in AATD patients as compared to non-AATD COPD patients. After correction
for age, pack years, body mass index, and sex, the differences were still significant for coronary artery disease (p = 0.002)
and the prevalence of peripheral artery disease as determined by an ankle-brachial-index <= 0.9 (p = 0.035). Also the
distribution of other comorbidities such as bronchiectasis differed between AATD and non-deficient COPD.
Conclusion: AATD is associated with a lower prevalence of cardiovascular disease, the underlying mechanisms need
further investigation
Associations of oxygenated hemoglobin with disease burden and prognosis in stable COPD: Results from COSYCONET
We studied whether in patients with stable COPD blood gases (BG), especially oxygenated hemoglobin (OxyHem) as a novel biomarker confer information on disease burden and prognosis and how this adds to the information provided by the comorbidity pattern and systemic inflammation. Data from 2137 patients (GOLD grades 1-4) of the baseline dataset of the COSYCONET COPD cohort were used. The associations with dyspnea, exacerbation history, BODE-Index (cut-off 8000/mu L was 2.33 (95% CI: 1.60-3.39, p<0.0001). In stable COPD, the concentration of oxygenated hemoglobin provided additional information on disease state, especially mortality risk. OxyHem can be calculated from hemoglobin concentration and oxygen saturation without the need for the measurement of PaO2. It thus appears well suited for clinical use with minimal equipment, especially for GPs
Associations of oxygenated hemoglobin with disease burden and prognosis in stable COPD : Results from COSYCONET
We studied whether in patients with stable COPD blood gases (BG), especially oxygenated hemoglobin (OxyHem) as a novel biomarker confer information on disease burden and prognosis and how this adds to the information provided by the comorbidity pattern and systemic inflammation. Data from 2137 patients (GOLD grades 1–4) of the baseline dataset of the COSYCONET COPD cohort were used. The associations with dyspnea, exacerbation history, BODE-Index (cut-off ≤2) and all-cause mortality over 3 years of follow-up were determined by logistic and Cox regression analyses, with sex, age, BMI and pack years as covariates. Predictive values were evaluated by ROC curves. Capillary blood gases included SaO2, PaO2, PaCO2, pH, BE and the concentration of OxyHem [haemoglobin (Hb) x fractional SaO2, g/dL] as a simple-to-measure correlate of oxygen content. Inflammatory markers were WBC, CRP, IL-6 and -8, TNF-alpha and fibrinogen, and comorbidities comprised a broad panel including cardiac and metabolic disorders. Among BG, OxyHem was associated with dyspnoea, exacerbation history, BODE-Index and mortality. Among inflammatory markers and comorbidities, only WBC and heart failure were consistently related to all outcomes. ROC analyses indicated that OxyHem provided information of a magnitude comparable to that of WBC, with optimal cut-off values of 12.5 g/dL and 8000/µL, respectively. Regarding mortality, OxyHem also carried independent, additional information, showing a hazard ratio of 2.77 (95% CI: 1.85–4.15, p  8000/µL was 2.33 (95% CI: 1.60–3.39, p < 0.0001). In stable COPD, the concentration of oxygenated hemoglobin provided additional information on disease state, especially mortality risk. OxyHem can be calculated from hemoglobin concentration and oxygen saturation without the need for the measurement of PaO2. It thus appears well suited for clinical use with minimal equipment, especially for GPs
Verification of Semantic Commutativity Conditions and Inverse Operations on Linked Data Structures
Commuting operations play a critical role in many parallel computing systems. We present a new technique for verifying commutativity conditions, which are logical formulas that characterize when operations commute. Because our technique reasons with the abstract state of verified linked data structure implementations, it can verify commuting operations that produce semantically equivalent (but not identical) data structure states in different execution orders. We have used this technique to verify sound and complete commutativity conditions for all pairs of operations on a collection of linked data structure implementations, including data structures that export a set interface (ListSet and HashSet) as well as data structures that export a map interface (AssociationList, HashTable, and ArrayList). This effort involved the specification and verification of 765 commutativity conditions. Many speculative parallel systems need to undo the effects of speculatively executed operations. Inverse operations, which undo these effects, are often more efficient than alternate approaches (such as saving and restoring data structure state). We present a new technique for verifying such inverse operations. We have specified and verified, for all of our linked data structure implementations, an inverse operation for every operation that changes the data structure state. Together, the commutativity conditions and inverse operations provide a key resource that language designers and system developers can draw on to build parallel languages and systems with strong correctness guarantees
Cardiovascular risk in patients with alpha-1-antitrypsin deficiency
Background: Alpha-1-antitrypsin deficiency (AATD) is a rare inherited condition caused by mutations of the SERPINA1 gene that is associated with the development of a COPD like lung disease. The comorbidities in patients with AATD-related lung diseases are not well defined. The aim of this study was to analyze the clinical phenotype of AATD patients within the German COPD cohort study COSYCONET (“COPD and SYstemic consequences-COmorbidities NETwork”) cohort focusing on the distribution of comorbidities. Method and results: The data from 2645 COSYCONET patients, including 139 AATD patients (110 with and 29 without augmentation therapy), were analyzed by descriptive statistics and regression analyses. We found significantly lower prevalence of cardiovascular comorbidities in AATD patients as compared to non-AATD COPD patients. After correction for age, pack years, body mass index, and sex, the differences were still significant for coronary artery disease (p = 0.002) and the prevalence of peripheral artery disease as determined by an ankle-brachial-index <= 0.9 (p = 0.035). Also the distribution of other comorbidities such as bronchiectasis differed between AATD and non-deficient COPD. Conclusion: AATD is associated with a lower prevalence of cardiovascular disease, the underlying mechanisms need further investigation
- …