126 research outputs found
Fluorescent Silicon Clusters and Nanoparticles
The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon
have been at the focus of research for several decades because of the relevance
of size effects for material properties, the importance of silicon in
electronics and the potential applications in bio-medicine. To date numerous
examples of nanostructured forms of fluorescent silicon have been reported.
This article introduces the principles and underlying concepts relevant for
fluorescence of nanostructured silicon such as excitation, energy relaxation,
radiative and non-radiative decay pathways and surface passivation.
Experimental methods for the production of silicon clusters are presented. The
geometric and electronic properties are reviewed and the implications for the
ability to emit fluorescence are discussed. Free and pure silicon clusters
produced in molecular beams appear to have properties that are unfavourable for
light emission. However, when passivated or embedded in a suitable host, they
may emit fluorescence. The current available data show that both quantum
confinement and localised transitions, often at the surface, are responsible
for fluorescence. By building silicon clusters atom by atom, and by embedding
them in shells atom by atom, new insights into the microscopic origins of
fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor
Klaus D. Sattler, CRC Press, August 201
Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia
Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment
All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution
Silicon nanosheets have attracted much attention owing to their novel electronic and optical properties and compatibility with existing silicon technology. However, a cost-effective and scalable technique for synthesizing these nanosheets remains elusive. Here, we report a novel strategy for producing silicon nanosheets on a large scale through the simultaneous molten-salt-induced exfoliation and chemical reduction of natural clay. The silicon nanosheets thus synthesized have a high surface area, are ultrathin (similar to 5 nm) and contain mesoporous structures derived from the oxygen vacancies in the clay. These advantages make the nanosheets a highly suitable photocatalyst with an exceptionally high activity for the generation of hydrogen from a water-methanol mixture. Further, when the silicon nanosheets are combined with platinum as a cocatalyst, they exhibit high activity in KOH (15.83 mmol H-2 per s per mol Si) and excellent photocatalytic activity with respect to the evolution of hydrogen from a water-methanol mixture (723 mu mol H-2 per h per g Si).clos
Data on Thermal Conductivity and Dynamic Mechanical Properties of Graphene Quantum dots in epoxy
Graphene Quantum Dots (GQDs) and epoxy have been combined into a nanocomposite and evaluated for their thermal and dynamic mechanical properties. Samples of varying GQD mass loading were first examined with SEM in several images. Thermal conductivity was estimated using Differential Scanning Calorimetry (DSC) with a step analysis technique and analysis program. Several dynamic mechanical properties were recorded using Dynamic Mechanical Analysis (DMA) and displayed in their raw and analyzed formats
- …